
Corticon.js Integration

Copyright

© 2021 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress
®

 software products are copyrighted and all rights are reserved by Progress
Software Corporation. The information in these materials is subject to change without notice, and Progress
Software Corporation assumes no responsibility for any errors that may appear therein. The references in
these materials to specific platforms supported are subject to change.

DataDirect Cloud, DataDirect Connect, DataDirect Connect64, DataDirect XML Converters, DataDirect XQuery,
DataRPM, Defrag This, Deliver More Than Expected, DevReach (and design), Icenium, Inspec, Ipswitch,
iMacros, Kendo UI, Kinvey, MessageWay, MOVEit, NativeChat, NativeScript, OpenEdge, Powered by Chef,
Powered by Progress, Progress, Progress Software Developers Network, SequeLink, Sitefinity (and Design),
Sitefinity, Sitefinity (and design), SpeedScript, Stylus Studio, Stylized Design (Arrow/3D Box logo), Styleized
Design (C Chef logo), Stylized Design of Samurai, TeamPulse, Telerik, Telerik (and design), Test Studio,
WebSpeed, WhatsConfigured, WhatsConnected, WhatsUp, and WS_FTP are registered trademarks of Progress
Software Corporation or one of its affiliates or subsidiaries in the U.S. and/or other countries.

Analytics360, AppServer, BusinessEdge, Chef Automate, Chef Compliance, Chef Desktop, Chef Habitat, Chef
WorkStation, Corticon.js, Corticon Rules, Data Access, DataDirect Autonomous REST Connector, DataDirect
Spy, DevCraft, Fiddler, Fiddler Everywhere, FiddlerCap, FiddlerCore, FiddlerScript, Hybrid Data Pipeline, iMail,
JustAssembly, JustDecompile, JustMock, KendoReact, NativeScript Sidekick, OpenAccess, PASOE, Pro2,
ProDataSet, Progress Results, Progress Software, ProVision, PSE Pro, Push Jobs, SafeSpaceVR, Sitefinity
Cloud, Sitefinity CMS, Sitefinity Digital Experience Cloud, Sitefinity Feather, Sitefinity Insight, Sitefinity Thunder,
SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog,
SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Supermarket,
SupportLink, Unite UX, and WebClient are trademarks or service marks of Progress Software Corporation
and/or its subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle
and/or its affiliates. Any other marks contained herein may be trademarks of their respective owners.

Last updated with new content: Corticon.js 1.1

Updated: 2021/03/15

3Progress Corticon.js: Corticon.js Integration: Version 1.2

Progress Corticon.js: Corticon.js Integration: Version 1.24

Copyright

Table of Contents

About Corticon.js integration...7
Node.js platform...11

AWS Lambda platform..11

Azure Functions platform..11

Google Cloud Functions platform...12

Browser platform..12

How to use the Corticon.js utilities..15

JSON processing in Corticon.js...17

How to implement custom functions at run time......................................23

Rule statements and Rule messages in Corticon.js.................................25

How to test deployed rules...29

How to use logging and diagnostics..31

5Progress Corticon.js: Corticon.js Integration: Version 1.2

Contents

Progress Corticon.js: Corticon.js Integration: Version 1.26

Contents

1
About Corticon.js integration

Corticon.js enables you to deploy rules on any JavaScript platform:

• Rules deployed as serverless functions on AWS Lambda or Microsoft Azure Functions

• Rules integrated into a cloud work flow such as AWS Step Functions or Microsoft Flow

• Rules run on your own back end as part of your Node.js platform

• Rules bundled in a mobile app created with Xamarin, React, Vue.js, or other toolkits

• Rules executed in a browser as part of a web application

After you have created and tested your rules in the Corticon.js Studio Ruletests, you are ready to package
them for deployment.When you package your rules, Corticon generates a self-contained JavaScript bundle:

• Self-contained means that it has no dependencies on other Corticon components at runtime.

• JavaScript means that it will be compatible with any JavaScript platform.

• Bundle means that the complete set of rules are produced in the scope of the Ruleflow to include all its
Rulesheets and enclosed Ruleflows in a single JavaScript file.

7Progress Corticon.js: Corticon.js Integration: Version 1.2

Each bundle sets the top-level Ruleflow as the entry point to your Decision Service, tailored for the selected
platform, with a wrapper that you can customize, and the rules in an obfuscated JavaScript file.

How to package rules for JavaScript deployment
When you package rules for deployment, you select the target platform. Corticon will generate a javascript
bundle with your rules and a wrapper specific to the target platform. The available target platforms are:

• AWS Lambda

• Azure Functions

• Browser

• Node.js

Selecting AWS Lambda or Azure Functions as the target platform generates the rules and a wrapper ready

for deployment as a serverless function. After the rules are deployed, you can use them on your cloud
platform—for example, to expose the decision service through a REST endpoint, to respond to a database
update, or to integrate into a cloud vendor workflow system such as AWS step functions.

The Node.js target can be used for running decision services in Node server and as well to run them in Mobile
applications created with NativeScript and ReactNative.

Selecting Browser generates the decision service and simple example code that demonstrates how to integrate
the rules into your application.

Note: See the Corticon.js 1.2 - Supported Platforms Matrix to review the supported JavaScript and web
platforms, and mobile apps.You are not limited to these JavaScript platforms. The API for integrating rules in
your JavaScript application allows you to develop your own wrapper or integration code that calls rules.

Progress Corticon.js: Corticon.js Integration: Version 1.28

Chapter 1: About Corticon.js integration

https://community.progress.com/s/news/corticon-js-1-2-supported-platforms-matrix-20Y4Q000000006TUAQ

To create a Corticon JavaScript package:

1. In Corticon.js Studio, select Project > Package Rules for Deployment.

2. The Package Rules for Deployment dialog box opens:

3. Choose the Target Platform:

4. Select the Ruleflows for your application. Note that the JavaScript File Name can be edited so that you
produce your package a distinctly named folder. Each Ruleflow selected generates a separate package.

5. Click Finish to generate the packaged JavaScript as Decision Services plus everything you need to deploy
each of them. The packaging process generates a single JavaScript bundle that is the entry point for the
rules, which contain all the decision logic in its enclosed components for each selected Ruleflow. The
generated bundle is compressed and obfuscated. It is valid, executable JavaScript, but it is not readable
and cannot be edited.

How to use the JavaScript rules API
All four platform wrappers have a lot in common. Their fundamental difference is the flow of the operations on
each platform. Each of the sample.js wrappers is self-documented.

9Progress Corticon.js: Corticon.js Integration: Version 1.2

The integration of the bundle with your JavaScript application is a simple API, not much more than a call to
execute against the bundle. The following sample code is taken from the node.sample.js file:

1. Include the generated rule bundle:

const decisionService = require('./decisionServiceBundle');

2. Get the JSON payload from your application:

const payload = readPayload(payloadFileName);

3. Set the configuration:

const configuration = { logLevel: 0 };

4. Execute the rules on the payload:

const result = decisionService.execute(payload, configuration);

Customizing the wrapper
The wrappers generated by Corticon.js are sample code with extensive comments.You are free to modify
them to meet your needs, or use them as reference for integrating Corticon.js rules with other code.

At their core, the wrappers all do the same things:

• Get the JSON payload to be processed.

• Execute rules on the payload.

• Do something with the result JSON payload.

In your custom code you could:

• Transform the payload, for example to make it suitable to pass to Corticon.

• Enrich the payload, for example with data you read from a database

• Store the result payload, saving the output of rule processing

• Process the result payload, for example passing it to REST service or another step in a workflow

What you do is up to you.

Each of the wrapper samples provides the same logging and error handling template.You can also define a
preferred logger, and set logging to debug mode. See How to use logging and diagnostics on page 31 for
details.

Service contracts
A service contract for a decision service shows the inputs you need to pass to the decision service as part of
the input payload, and the output you can expect to receive as part of the result JSON payload.

For details, see the following topics:

• Node.js platform

• AWS Lambda platform

• Azure Functions platform

• Google Cloud Functions platform

Progress Corticon.js: Corticon.js Integration: Version 1.210

Chapter 1: About Corticon.js integration

• Browser platform

Node.js platform
When packaging for Node deployment, Corticon.js will generate the files:

• decisionServiceBundle.js:Your obfuscated rules

• node.sample.js: Sample Node.js wrapper

The wrapper, node.sample.js, is pure sample code demonstrating how to embed rules in a Node.js
application. How you invoke rules from your own Node.js application depends on your needs.

You need to define a file named payload.json that contains the decision service request.You can export
the data from Corticon rule tester. To do so, open the Ruletest file (.ert) file, and then choose the menu
option: Rulesheet->RuleTest -> Data -> Input -> Export Request JSON

The sample wrapper reads the file payload.json, passes it to your rules, and writes the result to
result.json.

See the Node.js documentation for details on deploying serverless functions.

AWS Lambda platform
When packaging for AWS Lambda deployment, Corticon.js generates the files:

• decisionServiceBundle.js:Your rules, obfuscated

• index.js: Sample AWS Lambda wrapper

• lambda.zip: Zip file with both .js files to simplify deployment.

The wrapper, index.js, implements the AWS Lambda API to be invoked as a serverless function and returns
the results of its execution.

When invoked, the AWS Lambda function is passed a JSON payload. Examples of how this could be triggered
include using a REST API gateway to call your function, and using the function as a step in an AWS Step
Functions workflow. Once deployed as a serverless function, your rules are available to the AWS ecosystem.

The wrapper is a complete, ready-to-deploy, Lambda function but you can also modify it to meet the specific
needs of your application.

The lambda.zip file is generated as a convenience. AWS makes it easy to deploy a Lambda function in one
step using a .zip file.

See the AWS Lambda documentation for details on deploying serverless functions.

Azure Functions platform
When packaging for AWS Functions deployment, Corticon.js generates the files:

• decisionServiceBundle.js:Your rules, obfuscated

• azure.sample.js: Sample Azure Functions wrapper

11Progress Corticon.js: Corticon.js Integration: Version 1.2

Node.js platform

https://nodejs.org/en/docs/
https://docs.aws.amazon.com/lambda/index.html

The wrapper, azure.sample.js, implements the Azure Functions API for responding to HTTP triggers.

When invoked the Azure function is passed a JSON payload. This is most likely triggered by a REST call to
invoke the function.

The wrapper is a complete, ready-to-run, Azure function, yet you can also modify it to meet the specific needs
of your application. The Azure functions API has different signatures for different triggers.You can modify the
wrapper to meet the needs of different triggers.

See the Azure Functions documentation for details on deploying serverless functions.

Google Cloud Functions platform
When packaging for Google Cloud Functions deployment, Corticon.js generates the files:

• decisionServiceBundle.js:Your rules, obfuscated

• index.js: Sample Google Cloud Functions wrapper

The wrapper, index.js, implements the Google Cloud Functions API for responding to HTTP triggers.

When invoked, the Google Cloud function is passed a JSON payload. This is most likely triggered by a REST
call to invoke the function.

The wrapper is a complete, ready-to-run, Google Cloud function, yet you can also modify it to meet the specific
needs of your application. The Google Cloud functions API has different signatures for different triggers.You
can modify the wrapper to meet the needs of different triggers.

See the Google Cloud Functions documentation for details on deploying serverless functions.

Browser platform
When packaging for browser deployment, Corticon.js generates the files:

• decisionServiceBundle.js:Your obfuscated rules

• browser.sample.js: Sample code demonstrating calling Corticon.js rules

• browser.sample.html: Sample HTML page for testing browser deployment

The HTML page, browser.sample.html, present a simple form where you can provide a JSON payload,
invoke your rules, and see the resulting JSON.

The wrapper, browser.sample.js, simply invokes the rules with the payload input provided in the form.

The html page and wrapper are pure sample code. They just demonstrate how Corticon.js rules can be
embedded into a JavaScript application running in a browser.

Progress Corticon.js: Corticon.js Integration: Version 1.212

Chapter 1: About Corticon.js integration

https://docs.microsoft.com/en-us/azure/azure-functions/
https://cloud.google.com/functions/docs

The browser.sample.html is ready to run a simple page in a browser:

Paste in the JSON you exported from Studio tester into the left panel, and then click Run Decision Service.
The results in the right panel as shown in the illustration.You can tailor browser.sample.html to build your
UI around the decision service that you have now validated.

13Progress Corticon.js: Corticon.js Integration: Version 1.2

Browser platform

Progress Corticon.js: Corticon.js Integration: Version 1.214

Chapter 1: About Corticon.js integration

2
How to use the Corticon.js utilities

You can script continuous integration and continuous delivery (CI/CD) when you use the Corticon.js utilities to
make changes to software rapidly and iteratively.You can use the corticonjs command line utility with the
following options and sub-options:

• Package rules for deployment

• Generate rule reports

• Run rule tests

15Progress Corticon.js: Corticon.js Integration: Version 1.2

The utility is bundled with the Corticon JavaScript Studio installation in its Utilities directory.

corticonJS.bat options

usage: corticonJS
-c,--compile compile a ruleflow into a decision service
-h,--help print this message
-r,--report generate the report for a Corticon asset
-t,--test execute tests for a set of ruleflows or rulesheets

--compile options

usage: compile
-b,--bundle <name> the name of the decision service bundle
-h,--help print this message
-i,--input <file> ruleflow (.erf file) to compile
-o,--output <folder> folder to place the decision service Javascript bundle in
-p,--platform <target platform> target platform (Azure, Browser, Google, Lambda, Node)
-r,--root <entities> space separated list of entity names at the root of the payload

--report options

usage: report
-c,--css <CSS file> CSS file to use in report
-h,--help print this message
-i,--input <file> Corticon asset (.ecore, .ers, .erf, .ert) to report
-if,--image <image folder> image folder to copy to output folder
-o,--output <folder> folder to place the report files in
-p,--project <project name> Corticon project name to use in report
-x,--xslt <XSLT file> XSLT file to use in report

The files for generating reports are in your Corticon Work directory's Reports folder.

--test options

usage: test
-a,--all run all test sheets in the ruletest
-dj,--dependentjs <dependentJS> comma separated list of dependent javascript files
-h,--help print this message
-i,--input <file> comma separated list of input (.ert) files to run,
 wildcards allowed
-ll,--loglevel <Level> level of detail to write to log file
-lp,--logpath <Path> directory path for log file
-o,--output <file> file to contain output of test run
-s,--sheet <Sheet names> comma separated list of test sheets to run

Note: The test option requires a valid JavaScript enabled license file (CcLicense.jar) in the
Utilities/lib folder.

Progress Corticon.js: Corticon.js Integration: Version 1.216

Chapter 2: How to use the Corticon.js utilities

3
JSON processing in Corticon.js

Introduction
The processing of rules generated from a Corticon.js project is very straightforward.You pass well-formatted
JSON in to a Decision Service, and you get well-formatted JSON back that includes the results of rule execution.
This example shows a sample where the input on the left (volume and weight) was evaluated by rules to
the provide the response (container) on the right:

17Progress Corticon.js: Corticon.js Integration: Version 1.2

The decision service that was called has one set of rules:

When the rules ran, they applied changes to the input payload, and then returned the result payload with the
changes.The conditions in the request were met in rule column 1 so the action assigned the standard container.
Other of rules could determine the shipping cost for the container, the flight plan and assigned airplane, a
rebate amount for a customers, and insurance coverage for the container.

Create a Vocabulary from a JSON response
If you have a schema, you can get a rich description of how to define a Vocabulary. However, just having a
JSON response can be interpreted by Corticon.js to infer the entities, attributes, and associations that comprise
a Vocabulary.

For example, here is a JSON response that can be the foundation of a Corticon.js vocabulary: :

Progress Corticon.js: Corticon.js Integration: Version 1.218

Chapter 3: JSON processing in Corticon.js

When that response populates a Corticon.js vocabulary, the vocabulary looks like this:

From just the minimal JSON tags, the Vocabulary was interpreted as:

• An entity of an unspecified name, which defaulted to the name Root

• The several attributes of the Root entity

• Another entity named treatment that is an association from Root

• The several attributes of the treatment entity

• The the one-to-many association between Root and treatment

The notion of Root was the default name for two reasons:

1. The JSONObject that is at the base level of the source file had no name, so it was given the name Root.

2. The base level of the source file is maintained in the Vocabulary as the JSON Path value $.

Corticon.js will map input payloads into that internal data model defined by the vocabulary for processing. Only
entities and attributes that can be mapped to the vocabulary are available to the rules.

Corticon.js accepts your JSON as-is. There is no need to annotate the JSON. This is important because it
allows you to connect your decisions with other services without any transforms.That's useful, especially when
wiring together cloud services or calling decisions from a trigger in a SaaS application.

Because you generated your vocabulary from a JSON source, the JSON paths for the entities are stored in
the vocabulary and automatically set when you package for deployment.

19Progress Corticon.js: Corticon.js Integration: Version 1.2

Note: When defining a vocabulary manually, you need not define Root and JSON path. See TBD section for
more information on Root and JSON path .

Associations
After the top-level entities are defined, Corticon can map child objects in the JSON by the associations defined
on the entities in the vocabulary. Related entities are hierarchical relationships that will have a JSON Path
value relative to Root, like this:

The source file had these notations that used [{ to distinguish the hierarchical subset treatment:

Arrays
Object arrays (A->[B]->[C]

Progress Corticon.js: Corticon.js Integration: Version 1.220

Chapter 3: JSON processing in Corticon.js

• Show sample JSON

After populating the Vocabulary, the array is represented an association between "products": [{ "product_type":
"Shirts", "tags": ["mensware", "tshirts"] }]products and one or more tags:

How data types are mapped

• For a JSON schema where a data type is specified, use that data type.

• For a JSON instance:

• For a number that can be successfully converted to a relevant Java Date, set its data type as DateTime.

• "products": [{For a number with a decimal point, set its data type as Decimal.

• For a number without a decimal point, set its data type as Integer.

• For a string that is an ISO 8601 value, set its data type as DateTime, else it is a String.

• For an attribute with a data type of null, it is a String.

• For an empty array, it is a String array.

o How arrays of scalar values are mapped

 This is arrays of strings, numbers, …

 Show sample JSON

 Show how it’s associations in the vocab

o Root entity

 Top level entity in JSON

 Show sample JSON

 May or may not be in the vocabulary

- JSON path

o This section would give specific on the JSON path syntax (not the full syntax, just what we care about)

o Back with examples showing JSON and the path specification for different elements

Cortion.js API (Appendix)

- Suggest adding this to have a home for all the details of the api

- This will allow other sections to stay high level

21Progress Corticon.js: Corticon.js Integration: Version 1.2

Progress Corticon.js: Corticon.js Integration: Version 1.222

Chapter 3: JSON processing in Corticon.js

4
How to implement custom functions at run
time

How to Specify Implementation of Custom Functions for Runtime
The custom functions are specified at runtime in the configuration object. This allows for complete separation
of the custom functions from the rulesheet(s) and its bundle.

In particular, the custom functions can easily be:

• Shared across several decision services.

• Developed and managed with your own build pipeline.

The custom functions are specified in the configuration object using the attribute "customFunctions".

This attribute points to an array of object literals. Each object literal contains the information for one custom
function.

The syntax of the object literal is:

{name of function as used in rulesheet:reference to custom function};

For example, the following is a configuration for the custom function example:

const configuration = {
 logLevel: 0,
 customFunctions: [{"getSessionData": getSessionData},
 {"from data store":getMoreData}
]
};

Function Signature
A custom function must have the following signature:

23Progress Corticon.js: Corticon.js Integration: Version 1.2

function <functionName> (helper, name)

The name parameter contains the second argument string as entered in the Rulesheet editor.

For example, in the Rulesheet editor:

Ent1.str1 = getString('getSessionData','key2')

The getSessionData custom function name parameter will contain the string key2.

The helper function is an object literal containing references to Decimal and DateTime operators.

It has the following syntax:

helper={'decimal': <all decimal operators>,
 'dateTime': <all dateTime operators> }

How to Write the Implementation of Custom Functions for Runtime
You can implement the body of a custom function with whatever logic your use case requires.

The only constraints are:

• The custom function has the proper signature.

• You return the proper object type. A getDecimal call needs to return a Decimal, likewise a getDateTime
needs to return a DateTime.

• You use the helper object to create or operate on Decimal and DateTime objects.

The list of operators is the same as the one listed in the studio operator tree.

The following code shows to return (construct) decimals or dateTimes:

const sessionData = new Map();
sessionData.set('key1', true);
sessionData.set('key2', 'my session string');
sessionData.set('key3', 12);

function getSessionData (helper, name) {
 if (name === 'key4') { // example showing how to construct a DateTime
 return helper.dateTime.constructDateTime('2021-02-10T00:00:00.000Z');
 }
 else if (name === 'key5') { // example showing how to construct a Decimal
 return helper.decimal.constructDecimal('10.23');
 }
 else if (name === 'key6') { // example showing how to use additional built-in
operators like now and addDays
 const dt = helper.dateTime.now();
 const dt2 = helper.dateTime.addDays(dt, 7);
 return dt2;
 }
 else if (!sessionData.has(name))
 return 'ERROR - no session data for ' + name;
 else
 return sessionData.get(name);
}

function getMoreData (helper, name) {
 return name;
}

For information on creation of custom functions, see

"How to create extensions as Corticon.js language operators" in the Corticon.js Rule Modeling Guide.

Progress Corticon.js: Corticon.js Integration: Version 1.224

Chapter 4: How to implement custom functions at run time

5
Rule statements and Rule messages in
Corticon.js

In Studio you can add rule statements to rules. Rule statements allow you to add a message to individual rules
that will be returned with the result payload from a call to the decision service. Rule statements allow you to
capture "why" a decision was made. They are often used to debug rules or to capture an audit trail. Example:

When these rules execute, they produce the corresponding types of rule messages:

25Progress Corticon.js: Corticon.js Integration: Version 1.2

Configuration
Each of the target platform wrappers provide the information for implementing and managing rule messaging,
as shown:

/*

 Configuration Properties for Rule Messages

 */
 const configuration = {
 logLevel: 0,
 ruleMessages: {
 executionProperties: {
 restrictInfoRuleMessages: true,
 // If true Restricts Info Rule Messages
 restrictWarningRuleMessages: true,
 // If true Restricts Warning Rule Messages
 restrictViolationRuleMessages: true,
 // If true Restricts Violation Rule Messages

 restrictResponseToRuleMessagesOnly: true,
 // If true the response returned has only rule messages
 },
 },
 };*/

Progress Corticon.js: Corticon.js Integration: Version 1.226

Chapter 5: Rule statements and Rule messages in Corticon.js

Setting a configuration
The syntax of a configuration might look like this when we want to suppress violation messages, and put
messages in the log:

const configuration = {logLevel:0,ruleMessages:
{restrictViolationRuleMessages:true,logRuleMessages:true} };

27Progress Corticon.js: Corticon.js Integration: Version 1.2

Progress Corticon.js: Corticon.js Integration: Version 1.228

Chapter 5: Rule statements and Rule messages in Corticon.js

6
How to test deployed rules

Corticon.js Studio lets you create tests that will exercise your rulesheets and ruleflows. The best practice is to
create ruletests as part of the development of your rule projects.

To help you test your rules once they are deployed, Corticon.js provides a way to export the input data from
your ruletests as JSON that you can then use as input to test on your deployed platform. In Corticon.js Studio,
open a ruletest, and then right-click to choose Export JSON (or Export JSON to Clipboard) to export the
JSON data for testing.

Your rules should execute the same way on your JavaScript deployment as they do in the Corticon.js Studio
tester.

29Progress Corticon.js: Corticon.js Integration: Version 1.2

Progress Corticon.js: Corticon.js Integration: Version 1.230

Chapter 6: How to test deployed rules

7
How to use logging and diagnostics

Default logging
Corticon.js decisions services will, by default, log messages to the default output of the platform, which is, for
most JavaScript platforms, the JavaScript console. On other platforms, it is a context or similar object that the
platform provides for directing logging.

Custom logger configuration
You can set the logger configuration to control what, if anything, gets logged. See the options in the sample's
comments:

 // logLevel: 0: only error gets logged (default), 1: debugging info gets logged
 // logIsOn: when false, do not log. True by default, you can override dynamically
 to log data only for certain calls (for example by checking for a specific payload)

 // logPerfData: when true, will log performance data
 // logRulesStatements: when true, will write rule statements to the log
 // logFunction: Used to implement your own logger. When defined this function
 is called with a string message to log and an error level.

const configuration = { logLevel: 0 };

31Progress Corticon.js: Corticon.js Integration: Version 1.2

Custom logger
Each sample includes a simple logger where 1: log error and 2: log debug data.Your might want to log to a
preferred destination, such as into a database. To do that, you specify a custom logger:

function myLogger(msg, logLevel) {
 if (logLevel === 0)
 console.error(`**CUSTOM ERROR LOGGER: ${msg}`);
 else
 console.info(`**CUSTOM DEBUG LOGGER: ${msg}`);
}

Then you declare that you want to use a custom logger with the logFunction setting:

/*
const configuration = logFunction; { logLevel: 1 }

Basic logging
Each wrapper includes a sample configuration for logger that is a function you can override dynamically when
to log data. It is useful for tracing only certain calls (for example by checking for a specific payload) This function
is optional. When you pass a simple configuration without the logIsOn property you do not need to define
this function.

Logging has just two levels: 0: only errors get logged (default), 1: debugging info gets logged.

Filtered logging
Log entries can produce a lot of data, especially in debug mode.You can dynamically override when to log
data, such as tracing only certain calls or payload attribute values. When you pass a simple configuration
without the logIsOn property you don't need to define this property.

/*
function isLogOnForThisPayload(payload) {
 let flag;
 try {
 if (payload.Objects[0]['int1'] === 1)
 flag = true;
 else
 flag = false;
 }
 catch (e) {
 console.log (`Error in isLogOnForThisPayload: ${e}\n`);
 flag = true;
 }
 console.log(`isLogOnForThisPayload: ${flag}\n`);
 return flag;
}

Progress Corticon.js: Corticon.js Integration: Version 1.232

Chapter 7: How to use logging and diagnostics

	Copyright
	Table of Contents
	About Corticon.js integration
	Node.js platform
	AWS Lambda platform
	Azure Functions platform
	Google Cloud Functions platform
	Browser platform

	How to use the Corticon.js utilities
	JSON processing in Corticon.js
	How to implement custom functions at run time
	Rule statements and Rule messages in Corticon.js
	How to test deployed rules
	How to use logging and diagnostics

