
 Page 1 of 127

AKIOMA
simplifying complexity

www.akioma.de

DocxFactory

Version 1.2.14

C Tutorial
Written by Alon Blich

 Page 2 of 127

AKIOMA
simplifying complexity

www.akioma.de

Table of Contents

Linux Installation .. 4

Windows Installation .. 6

Printing and Conversion Tools Installation ... 10

Introduction .. 11

Top Level Items ... 12

Top Level Items Exercise .. 12

dfwc.h Include File .. 17

dfwc_compile Function .. 17

dfwc_getErrorFlag Function ... 18

dfwc_getErrorWhat Function ... 18

dfw.h Include File ... 20

dfw_load Function .. 22

dfw_paste Function .. 22

dfw_save Function.. 23

Sub Level Items ... 26

Sub Level Items 1 Exercise ... 26

Sub Level Items 2 Exercise ... 31

Item Groups .. 31

Fields ... 35

Fields Exercise .. 35

Text Format .. 37

Number Format .. 37

Datetime Format .. 37

dfw_setClipboardValue* Functions .. 39

Special Fields .. 42

Special Fields Exercise .. 42

Picture Format .. 48

Barcode Format .. 49

HTML/RTF Format .. 57

Boolean Format .. 57

Barcodes 1 Exercise .. 61

Barcodes 2 Exercise .. 64

 Page 3 of 127

AKIOMA
simplifying complexity

www.akioma.de

Chart Fields ... 70

Chart Fields Exercise .. 70

dfw_setChartValue* Function .. 74

Merge XML and JSON ... 77

Merge XML and JSON Exercise ... 77

dfw_merge Function .. 79

Border Conflicts .. 83

Border Conflicts Exercise.. 83

Alternating Colors ... 88

Alternating Colors Exercise .. 88

_alternate ... 90

Sections .. 93

Sections Exercise .. 93

Table of Contents Automatic Update ... 97

Table of Contents Automatic Update Exercise .. 98

dfw_setUpdateTocMethod Function ... 102

Introduction to Paging .. 105

Word Paging Features .. 106

Word Paging Exercise ... 106

Repeat Header Rows .. 109

Keep with Next ... 109

Keep Lines Together ... 109

Allow row to break across pages .. 109

DocxFactory Paging Features ... 112

DocxFactory Paging Exercise .. 113

_pageSize<n> .. 116

_size<n> .. 116

_keepTogether ... 117

_keepWithPrev ... 117

filler<n>... 117

spacer<n> ... 117

Third Party Acknowledgement ... 121

 Page 4 of 127

AKIOMA
simplifying complexity

www.akioma.de

Linux Installation

This chapter shows you how to install and setup DocxFactory on Linux.

1. Go to www.docxfactory.com and download the Linux installation package.

For the Linux 32bit version download DocxFactoryLinux32.tar.gz.

For the Linux 64bit version download DocxFactoryLinux64.tar.gz.

2. Before starting, it is recommended that you login as root so you have all the necessary

permissions to perform the installation.

Enter the commands below in the command line.

$ su -

3. Extract the DocxFactory/ directory into the /opt directory.

Enter the commands below in the command line.

cd /opt

tar -zxvf DocxFactoryLinux32.tar.gz

Note: If there is an older version installed then delete the DocxFactory directory first

(do not overwrite it).

4. Add the DocxFactory/lib/ directory to the list of library directories to search when a program

is run.

Either permanently using ldconfig:

echo /opt/DocxFactory/lib/ > /etc/ld.so.conf.d/DocxFactory.conf

chmod 666 /etc/ld.so.conf.d/DocxFactory.conf

ldconfig

Or temporarily using the LD_LIBRARY_PATH environment variable before the program is run:

export LD_LIBRARY_PATH=/opt/DocxFactory/lib:$LD_LIBRARY_PATH

Note: You will need to restart all processes that use the DocxFactory.so (or simply restart

the Computer) for the changes to take effect.

http://www.docxfactory.com/

 Page 5 of 127

AKIOMA
simplifying complexity

www.akioma.de

5. To compile C programs using DocxFactory with the GNU C Compiler:

1. Add the DocxFactory/include/ directory to the list of include directories.

2. Link to the libDocxFactory.so library.

See example below.

gcc -c <program.cpp> -I/opt/DocxFactory/include

gcc -o <executable> <program.o> \

-L/opt/DocxFactory/lib –l:libDocxFactory.so

Note: The backslash “\” at the end of line causes the command to continue in the next line.

The command is broken into several lines to fit in the page. You can write the

command in a single line without backslashes.

 Page 6 of 127

AKIOMA
simplifying complexity

www.akioma.de

Windows Installation

This chapter shows you how to install and setup DocxFactory on Windows.

1. Go to www.docxfactory.com and download the Windows installation .ZIP file.

For the Windows 32bit version download DocxFactoryWin32.zip.

For the Windows 64bit version download DocxFactoryWin64.zip.

2. Extract the DocxFactory\ directory into the Program Files\ directory.

The DocxFactoryWin32.zip is extracted to the C:\Program Files (x86)\ directory.

The DocxFactoryWin64.zip is extracted to the C:\Program Files\ directory.

Note: If there is an older version installed then delete the DocxFactory directory first

(do not overwrite it). You may need to shutdown all processes using the

DocxFactory.dll or the file will be locked and undeletable.

3. Add the DocxFactory\bin\ directory to the Windows PATH used to search for executables

and libraries when a program is run.

1. Right click My Computer and click Properties.

2. In the System Properties window, click on the Advanced tab.

3. In the Advanced section, click the Environment Variables button.

4. In the Environment Variables dialog box, select the PATH variable in the Systems

Variable section, click the Edit button and add to the PATH the “C:\Program Files

(x86)\DocxFactory\bin;” directory with a semicolon to separate it from the other

directories (see picture below).

Note: You will need to restart all processes that use the DocxFactory.dll (or simply restart

the Computer) for the changes in the PATH environment variable to take effect.

http://www.docxfactory.com/

 Page 7 of 127

AKIOMA
simplifying complexity

www.akioma.de

4. To compile C programs using DocxFactory with Visual Studio:

1. Create a new Console Application project.

2. Add the DocxFactory/include/ directory to the list of include directories.

In the project properties, in the C/C++ properties, in the General properties, add to

the Additional Include Directories the “C:\Program Files (x86)\DocxFactory\include;”

directory with a semicolon to separate it from the other directories (see picture

below).

 Page 8 of 127

AKIOMA
simplifying complexity

www.akioma.de

3. Link to the DocxFactory.lib library.

In the project properties, change the Configuration to “All Configurations”. Then in

the Linker properties, in the General properties, add to the Additional Library

Directories the “C:\Program Files (x86)\DocxFactory\lib;” directory with a semicolon

to separate it from the other directories (see picture below).

 Page 9 of 127

AKIOMA
simplifying complexity

www.akioma.de

In the Linker properties, in the Input properties, add to the Additional Dependencies

the “DocxFactory.lib;” library with a semicolon to separate it from the other libraries

(see picture below).

 Page 10 of 127

AKIOMA
simplifying complexity

www.akioma.de

Printing and Conversion Tools Installation

DocxFactory can only creates .DOCX files directly. To create .PDF, .HTML or other file formats,

DocxFactory first creates a .DOCX file and then converts the file using conversion tools. Likewise

to print, DocxFactory uses printing tools.

For the printing and conversion tools DocxFactory uses:

• Open Office (or LibreOffice) on Linux.

• Microsoft Office on Windows (Open Office can also be used on Windows as a free alternative).

Note: Installing printing and conversion tools is optional. If no printing and conversion tools are

installed then you will still be able to generate .DOCX files but not print or save as other file

formats.

Note: Open Office is not 100% compatible with Microsoft Word .DOCX file format meaning that it

may not look exactly the same in Open Office and may never will even in future versions of

Open Office simply because of the sheer size of the file format and all its different options. To

get the best results it is recommended to use Microsoft Office for printing and converting.

Note: Future versions of DocxFactory will also support designing and creating Open Office .ODT files

directly that will give the best results when printing and converting on Linux.

To use Open Office you will also need to install the Open Office SDK (see link below).

http://api.libreoffice.org/docs/install.html

The ODF Converter Integrator is an add on for Open Office that greatly improves Open Office

compatibility with Microsoft Office file formats. If you are using Open Office then it is highly

recommended that you also install the ODF Converter Integrator (see link below).

http://katana.oooninja.com/w/odf-converter-integrator

http://api.libreoffice.org/docs/install.html
http://katana.oooninja.com/w/odf-converter-integrator

 Page 11 of 127

AKIOMA
simplifying complexity

www.akioma.de

Introduction

The general steps to create .DOCX files using DocxFactory are (see picture below):

1. You start by designing a template (a regular .DOCX file) in Microsoft Word (or another office

suite like OpenOffice.org).

2. You then mark parts of the template using bookmarks, called items and add fields to your

items by typing the field names in squiggly brackets. For example: {MyField}.

3. When creating a new document from a template, DocxFactory first copies all the items with

their fields into the DocxFactory clipboard.

4. You then merge the data with the template by setting the field values of the items in the

clipboard and pasting the items with the set field values to the end of the new document.

Note: DocxFactory can only create .DOCX files directly. To create .PDF, .HTML or other files,

DocxFactory first creates a .DOCX file and then converts the file using Microsoft Office or

OpenOffice.org running in the background. Future versions of DocxFactory will also support

creating Microsoft Excel and OpenOffice.org files directly.

Template

mplate Item1

Level

Part

#1

Part1

{field1}

Item2

{field2}

{field3}

Clipboard
Item1

Hello World

Item2

123

01/01/1970

New Document

123

01/01/1970

Hello World

First

Second

 Page 12 of 127

AKIOMA
simplifying complexity

www.akioma.de

Top Level Items

Top level items are items that are not inside any other item. When a top level item is pasted it starts

in a new page.

Top Level Items Exercise

The following exercises in this tutorial walk you through creating a Bank Account Activity Report.

1. Open top_level_items.docx in the DocxFactory/exercises/templates/ directory (see picture

below).

 Page 13 of 127

AKIOMA
simplifying complexity

www.akioma.de

2. The recommended way to divide your layout into parts, in Microsoft Word, is using tables

without borders. The table only purpose is layout and is completely hidden.

To see the table, click inside the table and the Design and Layout ribbons will show. In the

Layout ribbon, select View Gridlines (see picture below).

3. To create an item, first highlight the area of the item.

Highlight the entire report (see picture below).

 Page 14 of 127

AKIOMA
simplifying complexity

www.akioma.de

4. Then insert a bookmark for the highlighted area with the name of the item.

In the Insert ribbon, press the Bookmark button to open the Bookmark dialog box. In the

Bookmark name, type “Account” and press the Add button (see picture below).

Note: A table cell cannot be marked as an item so it will not be possible to create a table with rows

that have a different number of cells. A table row is the smallest part of a table that can be

marked as an item. If a table cell is marked as an item then the area is expanded to mark the

whole table row. Future versions will support marking columns for horizontal pasting.

Note: In most cases, you’ll find it easier if you create items that map closely to your data structure.

For example: if you have a Bank Account table with the Bank Account’s data, you can create a

Bank Account item with the Bank Account’s fields.

 Page 15 of 127

AKIOMA
simplifying complexity

www.akioma.de

A top level item should start after the previous page break (or the start of the document) and end

right before the next page break (or the end of the document) where the next top level item starts

(see picture below).

For 2 reasons: 1. The start of a new page at the start of the top level item in the template is

the start of a new page when the top level item is pasted in the new document. 2. Everything in the

template should be in an item.

Even though you can: not put everything in items, put more than one top level item between page

breaks, put page breaks in the middle of an item or not put any items in the template this is not the

intended use and although the template will still compile and the program will still run you may not

get the results you intended.

Template

Page Break

Page Break

Page Break

Top Level Item #1

Top Level Item #2

Top Level Item #n

 Page 16 of 127

AKIOMA
simplifying complexity

www.akioma.de

5. Before you can use the template you must compile the .DOCX file to a .DFW file - (D)ocx

(F)actory (W)ordprocessing template file.

Copy and run the code below.

#include "dfwc.h"

#include <stdio.h>

#include <time.h>

int main()

{

 time_t l_start = clock();

 dfwc_compile(

 "/opt/DocxFactory/exercises/templates/top_level_items.docx",

 "/opt/DocxFactory/exercises/templates/top_level_items.dfw");

 if (dfwc_getErrorFlag()) goto ERROR;

 printf("Completed (in %.3f seconds).\n",

 (double) (clock() - l_start) / CLOCKS_PER_SEC);

 return 0;

 ERROR:

 printf("%s\n", dfwc_getErrorWhat());

 return 1;

}

The code compiles the template file. If the template is successfully compiled then the time it took to

compile is displayed. If an exception is thrown then the description of the exception is displayed.

Note: The code in the exercises uses the Linux installation directories for running on Linux. To run

the code on Windows, use the Windows installation directories.

Note: You can get the source .DOCX file from the compiled .DFW file, in case the .DOCX file is lost.

The .DFW file is actually a .ZIP file. You can open the .ZIP file (on Windows you can add a .ZIP

extension to the end of the file name and open the .ZIP file with the Windows Explorer) and

find the .DOCX file inside in the root directory with a # prefix.

 Page 17 of 127

AKIOMA
simplifying complexity

www.akioma.de

The code introduces the dfwc.h include file, its dfwc_compile function and error handling functions

(see details below).

dfwc.h Include File

The DocxFactory Word Processing Compiler Include File.

Header File:

#include "dfwc.h"

Functions:

dfwc_compile - Compiles a .DOCX file to a .DFW file.

dfwc_setTempDir - Sets the temporary directory used for saving

temporary files.

dfwc_getTempDir - Returns the temporary directory.

dfwc_getWorkDir - Returns the current working directory used for

resolving relative paths.

dfwc_getErrorWhat - If an error occurred in the last function call then

returns the error description.

dfwc_getErrorFlag - If an error occurred in the last function call then

returns true.

dfwc_compile Function

Compiles a .DOCX file to a .DFW file.

Declaration:

unsigned char dfwc_compile(

const char* p_sourceFile,

const char* p_targetFile);

Parameters:

p_sourceFile - The source .DOCX file.

p_targetFile – The target .DFW file.

Notes:

• Relative paths are resolved relative to the current working directory. For example:

“dir/template.docx” is resolved to “[working directory]/dir/template.docx”.

• The target file must end with a “.dfw” file extension. If it does not then a “.dfw” file

extension is added to the end of the file name.

• If the target file is blank then the source file is used.

 Page 18 of 127

AKIOMA
simplifying complexity

www.akioma.de

dfwc_getErrorFlag Function

If an error occurred in the last function call then returns true.

Declaration:

unsigned char dfwc_getErrorFlag();

dfwc_getErrorWhat Function

If an error occurred in the last function call then returns the error description.

Declaration:

const char* dfwc_getErrorWhat();

 Page 19 of 127

AKIOMA
simplifying complexity

www.akioma.de

6. Create a new document from the template we created, paste the top level item and save the

.DOCX file.

Copy and run the code below.

#include "dfw.h"

#include <stdio.h>

#include <time.h>

int main()

{

 time_t l_start = clock();

 dfw_load("/opt/DocxFactory/exercises/templates/top_level_items.dfw");

 if (dfw_getErrorFlag()) goto ERROR;

 for (int i = 0; i < 3; i++)

 {

 dfw_paste("Account");

 }

 dfw_save("/tmp/top_level_items.docx");

 if (dfw_getErrorFlag()) goto ERROR;

 printf("Completed (in %.3f seconds).\n",

 (double) (clock() - l_start) / CLOCKS_PER_SEC);

 return 0;

 ERROR:

 printf("%s\n", dfw_getErrorWhat());

 return 1;

}

 Page 20 of 127

AKIOMA
simplifying complexity

www.akioma.de

The code introduces the dfw.h include file and its dfw_load, dfw_paste and dfw_save functions (see

details below).

dfw.h Include File

The DocxFactory Word Processing Merger Include File.

Header File:

#include "dfw.h"

Functions:

dfw_load - Creates a new document from a .DFW

template.

dfw_save - Saves the new document to a .DOCX file

or possibly converts to a .PDF, .HTML

or other.

dfw_print - Prints the new document.

dfw_close - Closes an open document. Used for

checking fields and items only without

saving.

dfw_setClipboardValueByStr - Sets a field value of an item in the

clipboard from a string value.

dfw_setClipboardValueByDouble - Sets a field value of an item in the

clipboard from a double value.

dfw_setChartValueByStrStr - Sets a value in the chart field values

matrix by category string value and

series string value.

dfw_setChartValueByStrDouble - Sets a value in the chart field values

matrix by category double value and

series string value.

dfw_setChartValueByDoubleDouble - Sets a value in the chart field values

matrix by X double value and Y double

value.

dfw_paste - Pastes an item from the clipboard with

its field values to the new document.

dfw_merge - Merges XML or JSON with the template.

dfw_getItems - Returns a comma separated list of all

the items in the template.

dfw_getFields - Returns a comma separated list of all

the fields in the template.

dfw_getItemFields - Returns a comma separated list of all

the fields in an item.

dfw_getItemParent - Returns the parent of an item.

 Page 21 of 127

AKIOMA
simplifying complexity

www.akioma.de

dfw_setCodePage - Sets the code page for strings passed

to dfw_setClipboardValue procedure.

dfw_setNumFracSep - Sets the number fraction separator

sign.

dfw_setNumThSep - Sets the number thousand separator

sign.

dfw_setDateFormat - Sets the date format.

dfw_setYearOffset - Sets the year offset for 2 digit

years.

dfw_setFirstWeekDay - Sets the first week day.

dfw_setWeekDayNames0 - Accepts 0 parameters and resets the

week day names from the computer

regional settings.

dfw_setWeekDayNames7 - Accepts 7 parameters for the week day

full names. The short names are taken

from the full names first 3 letters.

dfw_setWeekDayNames14 - Accepts 14 parameters for the week day

full and short names.

dfw_setMonthNames0 - Accepts 0 parameters and resets the

month names from the computer regional

settings.

dfw_setMonthNames12 - Accepts 12 parameters for the month

full names. The short names are taken

from the full names first 3 letters.

dfw_setMonthNames24 - Accepts 24 parameters for the month

full and short month names.

dfw_getCodePage - Returns the code page.

dfw_getNumFracSep - Returns the number fraction separator

sign.

dfw_getNumThSep - Returns the number thousand separator

sign.

dfw_getDateFormat - Returns the date format.

dfw_getYearOffset - Returns the year offset.

dfw_getFirstWeekDay - Returns the first day of the week.

dfw_getWeekDayFullNames - Returns the full week day names.

dfw_getWeekDayShortNames - Returns the short week day names.

dfw_getMonthFullNames - Returns the full month names.

dfw_getMonthShortNames - Returns the short month names.

 Page 22 of 127

AKIOMA
simplifying complexity

www.akioma.de

dfw_setTempDir - Sets the temporary directory used for

saving temporary files.

dfw_getTempDir - Returns the temporary directory.

dfw_getWorkDir - Returns the current working directory

used for resolving relative paths.

dfw_getErrorWhat - If an error occurred in the last

function call then returns the error

description.

dfw_getErrorFlag - If an error occurred in the last

function call then returns true.

dfw_load Function

Creates a new document and cuts all the template items into the DocxFactory clipboard.

Declaration:

unsigned char dfw_load(const string& p_templateFile);

Parameters:

p_templateFile - The template .DFW file.

Notes:

• Relative paths are resolved relative to the current working directory. For example:

“dir/template.dfw” is resolved to “[working directory]/dir/template.dfw”.

dfw_paste Function

Pastes an item from the DocxFactory clipboard with all its field values on to the new document.

Declaration:

unsigned char dfw_paste(const char* p_itemName);

Parameters:

p_itemName – The item name.

Notes:

• The item names are not case sensitive. For example: “Account” and “account” refer to the

same item.

 Page 23 of 127

AKIOMA
simplifying complexity

www.akioma.de

dfw_save Function

Saves the new document out to a file. After saving, the document is closed and no more data can be

merged until a new template is loaded.

Declaration:

unsigned char save(const char* p_targetFile);

Parameters:

p_targetFile – The target file.

Notes:

• If the target file is not a .DOCX file (for example: .PDF file) then DocxFactory first saves the

document as a .DOCX file and then converts the file to the target file.

• Relative paths are resolved relative to the current working directory. For example:

“dir/template.docx” is resolved to “[working directory]/dir/template.docx”.

 Page 24 of 127

AKIOMA
simplifying complexity

www.akioma.de

7. Open the created .DOCX file.

As you can see, every top level item starts in a new page (see picture below).

 Page 25 of 127

AKIOMA
simplifying complexity

www.akioma.de

8. Save as .PDF file.

In your code, change the save file to "/tmp/top_level_items.pdf". Run and open the file (see

picture below).

Note: DocxFactory can only create .DOCX files directly. To create .PDF, .HTML or other file formats,

DocxFactory first creates a .DOCX file and then converts the file using conversion tools.

Likewise to print, DocxFactory uses printing tools.

You must have printing and conversion tools installed to print and convert to other file

formats (see the chapter on printing and conversion tools installation in the beginning for

details).

 Page 26 of 127

AKIOMA
simplifying complexity

www.akioma.de

Sub Level Items

A sub level item is an item that is inside another item (sub level items can have sub level items inside

them. There is no limit to the number of levels of nested sub level items you can have). When a sub

level item is pasted it is repeated in its place.

Sub Level Items 1 Exercise

1. Open sub_level_items_1.docx in the DocxFactory/exercises/templates/ directory (see picture

below).

 Page 27 of 127

AKIOMA
simplifying complexity

www.akioma.de

2. Open the Bookmark dialog box to view the items in the template.

There are 3 bookmarks for the items in the template. Highlight each bookmark and press the

Go To button to view the highlighted area (see picture below).

 Page 28 of 127

AKIOMA
simplifying complexity

www.akioma.de

3. Compile the template. You can also compile the template from the command-line.

See example below.

$ word-processing-compiler <source file> <target file>

Note: There is also a word-processing-merger command line tool to merge templates and XML or

JSON. To show the tools options, launch the tools with the --help option.

4. Create the .DOCX file.

Copy and run the code below.

#include "dfw.h"

#include <stdio.h>

#include <time.h>

int main()

{

 time_t l_start = clock();

 dfw_load("/opt/DocxFactory/exercises/templates/sub_level_items_1.dfw");

 if (dfw_getErrorFlag()) goto ERROR;

 dfw_paste("Account");

 for (int i = 0; i < 3; i++)

 {

 dfw_paste("Line");

 dfw_paste("Comment");

 }

 dfw_save("/tmp/sub_level_items_1.docx");

 if (dfw_getErrorFlag()) goto ERROR;

 printf("Completed (in %.3f seconds).\n",

 (double) (clock() - l_start) / CLOCKS_PER_SEC);

 return 0;

 ERROR:

 printf("%s\n", dfw_getErrorWhat());

 return 1;

}

 Page 29 of 127

AKIOMA
simplifying complexity

www.akioma.de

In general, when pasting an item the item is added to the end of the document. When a top level item

is pasted it is simply added to the end of the document. When a sub level item is pasted it is added

inside its parent in the end of the document because a sub level item must be added inside its parent

and cannot be added by itself.

More specifically, when a sub level item is pasted DocxFactory looks for the parent of the item being

pasted starting from the last item pasted and going up through its parents, when the parent is found,

the item is added inside the parent.

With the following exceptions, if the item is not a direct child of the parent then all the item missing

parents are first pasted before pasting the item. Similarly, if no parent was found except for the

document then all the item parents upto the top level item are first pasted before pasting the item.

In our example, if you pasted the Line item without first pasting its Account parent item then

DocxFactory would first paste its missing Account parent item and then paste the Line item.

 Page 30 of 127

AKIOMA
simplifying complexity

www.akioma.de

5. Open the created .DOCX file.

As you can see, every sub level item is repeated in its place (see picture below).

 Page 31 of 127

AKIOMA
simplifying complexity

www.akioma.de

Sub Level Items 2 Exercise

Item Groups

In the previous exercise, every sub level item was repeated in its own place separately from each

other but what if you want to mix them together?

Items placed together one right after the other with nothing between them are called an Item Group.

Items in the same group can be mixed together.

1. Open sub_level_items_2.docx in the DocxFactory/exercises/templates/ directory (see picture

below).

 Page 32 of 127

AKIOMA
simplifying complexity

www.akioma.de

2. Open the Bookmark dialog box to view the items in the template.

Select sort by Location at the bottom of the dialog box and highlight the Deposit, Withdraw

and Comment bookmarks. You can see that the Deposit, Withdraw highlighted areas are

placed one right after the other with nothing between them. The Comment bookmark is

placed separately with a space separating it from the other bookmarks (see picture below).

 Page 33 of 127

AKIOMA
simplifying complexity

www.akioma.de

3. Compile the template.

4. Create the .DOCX file.

Copy and run the code below.

#include "dfw.h"

#include <stdio.h>

#include <time.h>

int main()

{

 time_t l_start = clock();

 dfw_load("/opt/DocxFactory/exercises/templates/sub_level_items_2.dfw");

 if (dfw_getErrorFlag()) goto ERROR;

 dfw_paste("Account");

 for (int i = 0; i < 3; i++)

 {

 dfw_paste("Deposit");

 dfw_paste("Withdraw");

 dfw_paste("Comment");

 }

 dfw_save("/tmp/sub_level_items_2.docx");

 if (dfw_getErrorFlag()) goto ERROR;

 printf("Completed (in %.3f seconds).\n",

 (double) (clock() - l_start) / CLOCKS_PER_SEC);

 return 0;

 ERROR:

 printf("%s\n", dfw_getErrorWhat());

 return 1;

}

 Page 34 of 127

AKIOMA
simplifying complexity

www.akioma.de

5. Open the created .DOCX file.

As you can see, the Deposit and Withdraw items are mixed together in the order they were

pasted and the Comment items are still separate from the other items (see picture below).

 Page 35 of 127

AKIOMA
simplifying complexity

www.akioma.de

Fields

Fields are place holders in items for inserting values.

Fields Exercise

1. Open fields.docx in the DocxFactory/exercises/templates/ directory (see picture below).

 Page 36 of 127

AKIOMA
simplifying complexity

www.akioma.de

2. To add fields, type the field name in squiggly brackets. You can also add an optional format

after the field name separated by a space. For example: “{MyNumber #,##0.00}”.

Add the fields below to your template (see picture below):

1. {LineDate MMM d, yyyy} in the Date column.

2. {LineDesc} in the Description column.

3. {LineAmt $#,##0.00} in the Deposit column.

4. {PrintDate MMM d, yyyy} in the header of the document.

Note: The same field name can be used more than once in the same document and even in the

same item. When setting the field values, if there is more than one field with the specified

field name then all the fields with that name are set.

Note: If your fields do not fit in the table columns and you do not want the columns width to change

while you are designing your template then you can select Fixed Column Width in the AutoFit

menu in the Layout ribbon (see picture above).

Note: If you want to use squiggly brackets in your template then escape the brackets by entering

double brackets (“{{“ or “}}”). The brackets will show up only once in the created .DOCX file.

 Page 37 of 127

AKIOMA
simplifying complexity

www.akioma.de

There are 3 basic field types. The field type is decided according to the field format entered in the

template.

Text Format

Text fields have no format and are the default field type if no format is entered.

Note: At the moment, text fields have no format but text field format is planned to be added in

future versions of DocxFactory.

Number Format

Number fields use the Microsoft Excel number formats.

For example:

• $#,##0.00

• #0%

• [GREEN]#,##0.0#;[RED]-#,##0.0#;-

In the template the number format should always be entered using the American number format

(using a comma “,” for the thousands separator and a dot “.” for the decimal point).

In the created .DOCX file the number values are displayed in the current DocxFactory number

format. This approach allows for sharing templates created in different countries with different

number formats.

Note: You can also enter colors using the six digits hexadecimal format prefixed with a #.

For example: “[#FF00FF]”.

Datetime Format

Like number formats, datetime formats also use the Microsoft Excel datetime formats.

For example:

• MMM d, yyyy

• [h]:mm:ss.sss AM/PM

• MM/dd/yyyy hh:mm:ss

In the template you can also enter a “99/99/99” or “99/99/9999” in the date format.

In the created .DOCX file the day, month and year places in the date value are displayed

according to the current DocxFactory date format.

Note: You can also escape characters that are used by any of the formats using the “\” sign.

For example: “\M\D\Y MMM d, yyyy”.

Note: You can also use comments in your field definition using the C/C++ multiline comment syntax.

For example: “{MyField /*MMM d, yyyy*/ 99/99/99}”.

 Page 38 of 127

AKIOMA
simplifying complexity

www.akioma.de

3. Compile the template.

4. Create the .DOCX file.

Copy and run the code below.

#include "dfw.h"

#include <string.h>

#include <stdio.h>

#include <time.h>

int main()

{

 // DocxFactory default input codepage is UTF8.

 // Use setCodePage() to change the codepage.

 // dfw_setCodePage("ISO8859-1");

 time_t l_start = clock();

 dfw_load("/opt/DocxFactory/exercises/templates/fields.dfw");

 if (dfw_getErrorFlag()) goto ERROR;

 dfw_setClipboardValueByDouble("_header", "PrintDate", (double) l_start);

 dfw_paste("Account");

 for (int i = 0; i < 3; i++)

 {

 char str[10];

 strcpy(str, "Desc ");

 str[strlen(str) - 1] = (char) ('0' + i);

 dfw_setClipboardValueByDouble ("Line", "LineDate",(double) l_start);

 dfw_setClipboardValueByDouble ("Line", "LineAmt", (double) i);

 dfw_setClipboardValueByStr ("Line", "LineDesc", str);

 dfw_paste("Line");

 }

 dfw_save("/tmp/fields.docx");

 if (dfw_getErrorFlag()) goto ERROR;

 printf("Completed (in %.3f seconds).\n",

 (double) (clock() - l_start) / CLOCKS_PER_SEC);

 return 0;

 ERROR:

 printf("%s\n", dfw_getErrorWhat());

 return 1;

}

 Page 39 of 127

AKIOMA
simplifying complexity

www.akioma.de

The code sets the field values of an item in the clipboard and pastes the item, copying the item with

the set field values to the new document. Because of that, field values must be set before the item is

pasted otherwise if the item is pasted before the values are set then the item will be pasted with

empty values to the new document. Every time after a paste function is run all the fields in the

clipboard are automatically cleared so you would not need to clear old values manually.

The code sets the values for all the basic field types:

• Text fields are set with a string value.

• Number fields are set with a numeric value.

• Datetime fields are set with a double value of UNIX time (seconds from 1/1/1970 at

00:00:00).

In addition, the PrintDate field in the header of the document is set. The “_Header” item name is used

to refer to fields that are both in the header or footer of the document. The same item name is used

to refer to both the header and footer to help separate between the design and code. For example:

If you move a field in the header to the footer in your template then no changes in your code will be

required. Unlike regular items, the header and footer do not need to be pasted and are always part of

the document.

The code introduces the dfw_setClipboardValue* functions (see details below).

dfw_setClipboardValue* Functions

Sets the field value of an item in the DocxFactory clipboard.

1. Sets the field with a string value.

2. Sets the field with a number value.

Declaration:

1. unsigned char dfw_setClipboardValueByStr(

const char* p_itemName,

const char* p_fieldName,

const char* p_str);

2. unsigned char dfw_setClipboardValueByDouble(

const char* p_itemName,

const char* p_fieldName,

double p_val);

Parameters:

p_itemName - Item name.

p_fieldName - Field name.

p_str - String value.

p_val - Number value.

 Page 40 of 127

AKIOMA
simplifying complexity

www.akioma.de

Notes:

• The item names are not case sensitive. For example: “Account” and “account” refer to the

same item.

• The field names are not case sensitive. For example: “LineDate” and “linedate” refer to the

same field.

• If there is more than one field with the specified field name then all the fields with that name

are set.

• If the item name is not specified (“”) then the fields anywhere in the document with the

specified field name are set. It is recommended to specify an item name to avoid setting

unintended fields.

• Use the “_Header” item name to refer to items that are in the header or footer of the

document.

• If a text field is set with a number value then the number value is converted to a string value

using the current DocxFactory number format.

• If a number field is set with a string value then the string value is converted to a number

value using the current DocxFactory number format.

• Datetime fields are set with a string value of ISO datetime or just a date string in the current

DocxFactory date format or just a time string.

For example:

o 1999-12-31T23:59:59.123+11:30 (“T” can be replaced with a blank “ “)

o 1999-12-31T23:59:59

o 1999-12-31

o 31/12/1999

o 31/12/99

o 23:59:59.999

o 23:59:59

• Datetime fields can also be set with a numeric value of UNIX time (seconds from 1/1/1970 at

00:00:00). Fractions of a second values are also supported.

 Page 41 of 127

AKIOMA
simplifying complexity

www.akioma.de

5. Open the created .DOCX file (see picture below).

The code in this exercise contains all the main components for creating a .DOCX file: create a

new document from a template, set field values, paste items and save the .DOCX file. As you

can see, there are only 4 main functions needed to create a .DOCX file.

 Page 42 of 127

AKIOMA
simplifying complexity

www.akioma.de

Special Fields

Besides the basic fields there are additional special fields:

1. Picture fields to insert pictures.

2. Barcode fields to insert text values displayed as barcodes. DocxFactory supports an extensive

list of 1D and 2D barcodes including Code39, Code128, EAN, UPC, ISBN, Databar, Postal

Codes, PDF417, Data Matrix, QR Code, Maxi Code and many more.

3. HTML/RTF fields to insert HTML or RTF values instead of plain text that can be used to add a

little formatting like fonts, bolding, colors etc. all the way up to inserting mini documents

with numbered or bullet lists, tables etc.

4. Boolean fields which are a cross between fields and items. Boolean fields have items for yes

and no values (that just like regular items can have text, pictures etc.). When setting the field

value, the appropriate item for that value is pasted.

Special Fields Exercise

1. Open special_fields.docx in the DocxFactory/exercises/templates/ directory (see picture

below).

 Page 43 of 127

AKIOMA
simplifying complexity

www.akioma.de

2. To add a picture field, first insert a picture to the template. The picture acts as a place holder

that will be replaced with your pictures when creating a new document.

First click in the box in the top left corner of the document to place the cursor in the box.

Then select Picture in the Insert ribbon and choose customer0.png from the

DocxFactory/images/ directory (see picture below).

3. Size the picture.

Right click the picture and select Size from the drop down menu. In the size dialog box make

sure the Lock Aspect Ratio is selected, enter 0.94" in the height and press the Close button

(see picture below).

 Page 44 of 127

AKIOMA
simplifying complexity

www.akioma.de

4. Enter the picture field name and optional formatting.

If you are using Microsoft Word 2007 then right click the picture and select Size from the

drop down menu. Select the Alt Text tab in the Size dialog box and enter “{CustomerPic

UsePlaceHolderSize}” in the Alternative text box (see picture below).

If you are using Microsoft Word 2010 then right click the picture and select Format Picture

from the drop down menu. Select Alt Text from the menu and enter the field name and

optional formatting in the Description box.

 Page 45 of 127

AKIOMA
simplifying complexity

www.akioma.de

5. Add a border around the place holder image.

Right click the picture and select Format Picture. In the Format Picture dialog box, select the

Line Style category, select the third option from the Compound type combo box, enter 5pt

Width and close the dialog box (see picture below).

 Page 46 of 127

AKIOMA
simplifying complexity

www.akioma.de

6. To add a barcode field, enter the field name, the barcode type and any other barcode

optional formatting in squiggly brackets just like adding a basic field.

Replace the Account under Bank Account Activity Report with “{Account UPCA ShowValue}”

and increase the font size to 26 (see picture below).

7. To add an HTML/RTF field, enter the field name and “HTML” or “RTF” in the optional

formatting in squiggly brackets just like adding a basic field.

Replace the Comments at the bottom of the document with “{Comments HTML}” (see

picture below).

The HTML tag styles like fonts, colors etc. are taken from document named styles for similar parts

(in the Styles group in the Home ribbon). For example: “<h1>” tag uses the Heading 1 style, “<p>” tag

uses the Normal style and “” tag uses the Strong style. Just like in HTML, tag styles can also

be combined. For example: “<p></p>” combines the Normal and Strong styles.

You can also create your own named style and apply it to an HTML tag by setting the class property to

the style name. For example: create a style named MyStyle and insert the HTML “<p

class="mystyle"></p>” (note that the HTML class must be in lowercase). Although HTML can also be

styled with CSS styles combined in the HTML it is recommended to insert plain HTML in the program

and manage the HTML styles using named styles in the template to help keep the data and design

separate.

The inserted HTML/RTF values are like paragraphs which have a line break before and after them and

cannot be inserted in the middle of a line.

 Page 47 of 127

AKIOMA
simplifying complexity

www.akioma.de

8. To add a boolean field, create items for the boolean field values:

1. <field name>_yes - The item name for the field yes value.

2. <field name>_no - The item name for the field no value.

3. <field name>_notset - The item name for the field if the value was not set.

First, select More Symbols from the Symbol drop down menu in the Insert ribbon. Make sure

the “Windings 2” font is selected and insert the symbols: “”, “” and “” before the

“Active” text and deselect the Italicize (see picture below).

 Page 48 of 127

AKIOMA
simplifying complexity

www.akioma.de

Then create the items below (see picture below):

1. Active_yes - That marks the “” symbol.

2. Active_no - That marks the “” symbol.

3. Active_notset - That marks the “” symbol.

Note: All the items for the boolean field values are optional. If there is no item for the set field value

then no item is pasted.

Note: The field name and value in the boolean field item names are not case sensitive. For example:

“MyField_Yes” and “myfield_yes” refer to the same field name and value.

Just like basic fields, special fields also have optional formatting.

Picture Format

• UseImageFileSize - Resizes the inserted picture to the image file width and height

and is the default format if no format is entered.

• UsePlaceHolderSize - Keeps the place holder picture width and height.

• UsePlaceHolderWidth - Keeps the place holder picture width and calculates the height

according to the image file width/height ratio.

• UsePlaceHolderHeight - Keeps the place holder picture height and calculates the width

according to the image file width/height ratio.

 Page 49 of 127

AKIOMA
simplifying complexity

www.akioma.de

Barcode Format

• <Barcode type>

1 Dimensional Barcodes

Code11 - Code 11

Code25 - Code 2 of 5 Standard

Code25IATA - Code 2 of 5 IATA

Code25Inter - Code 2 of 5 Interleaved

Code25Logic - Code 2 of 5 Data Logic

Code25Ind - Code 2 of 5 Industrial

ITF14 - ITF-14

Code39 - Code 3 of 9 (Code 39)

Code39Ext - Extended Code 3 of 9 (Code 39+)

Code93 - Code 93

PZN - PZN

LOGMARS - LOGMARS

Code32 - Code 32

Code128 - Code 128 (automatic subset switching)

Code128B - Code 128 (subset B)

EAN128 - GS1-128 (UCC.EAN-128)

EAN14 - EAN-14

NVE18 - NVE-18

UPCA - UPC-A

UPCE - UPC-E

EAN - EAN (2, 5, 8, 13)

ISBN - ISBN (EAN-13 with verification stage)

Codabar - Codabar

Pharma - Pharmacode

Pharma2Track - Pharmacode 2 Track

Plessey - Plessey Code

MSIPlessey - MSI Plessey

Telepen - Telepen Alpha

TelepenNum - Telepen Numeric

RSS14 - GS1 Databar-14

RSS14Stack - GS1 Databar-14 Stacked

RSS14StackOmni - GS1 Databar-14 Stacked Omni Directional

RSSLtd - GS1 Databar Limited

RSSExp - GS1 Databar Extended

RSSExpStack - GS1 Databar Expanded Stacked

Channel - Channel Code

FIM - FIM

Flat - Flattermarken

DAFT - DAFT Code

 Page 50 of 127

AKIOMA
simplifying complexity

www.akioma.de

PostNet - PostNet

PLANET - PLANET

OneCode - USPS OneCode

RM4SCC - Royal Mail 4 State (RM4SCC)

DPLeit - Deutshe Post Leitcode

DPIdent - Deutshe Post Identcode

AUSPost - Australia Post Standard Customer

AUSReply - Australia Post Reply Paid

AUSRoute - Australia Post Routing

AUSRedirect - Australia Post Redirection

KIX - Dutch Post KIX Code

JapanPost - Japanese Postal Code

KoreaPost - Korea Post

2 Dimensional Barcodes

Code16K - Code 16K

Code49 - Code 49

PDF417 - PDF417

PDF417Trunc - PDF417 Truncated

MicroPDF - MicroPDF417

DataMatrix - Data Matrix

QRCode - QR Code

MicroQR - Micro QR Code

MaxiCode - Maxicode

Aztec - Aztec Code

AzRune - Aztec Runes

CodeOne - Code One

GridMatrix - Grid Matrix

HIBC Version Barcodes

HIBCCode39 - HIBC Code 39

HIBCCode128 - HIBC Code 128

HIBCPDF417 - HIBC PDF417

HIBCMicroPDF - HIBC MicroPDF417

HIBCDataMatrix - HIBC Data Matrix

HIBCQRCode - HIBC QR Code

HIBCAztec - HIBC Aztec Code

 Page 51 of 127

AKIOMA
simplifying complexity

www.akioma.de

Composite Barcodes

CCEAN - Composite Symbol with EAN Linear Component

CCEAN128 - Composite Symbol with GS1-128 Linear Component

CCUPCA - Composite Symbol with UPC-A Linear Component

CCUPCE - Composite Symbol with UPC-E Linear Component

CCRSS14 - Composite Symbol with GS1 Databar-14 Linear Component

CCRSS14Stack - Composite Symbol with GS1 Databar-14 Stacked

CCRSS14StackOmni - Composite Symbol with GS1 Databar-14 Stacked Omni

CCRSSLtd - Composite Symbol with GS1 Databar Limited Component

CCRSSExp - Composite Symbol with GS1 Databar Extended Component

CCRSSExpStack - Composite Symbol with GS1 Databar Expanded Stacked

• Scale: <scale> - Used to set the barcode print size. The barcode size is multiplied

by the scale, where the height of the barcode in scale 1 is equal

to the height of a paragraph in font size 30. The default scale, if

no scale is entered is calculated according to the font size of the

barcode field definition in the template, where font size 30 is

equal to scale 1.

• Height: <height> - The height for 1 dimensional barcodes. The default height, if no

height is entered is 50.

• ShowValue - Shows the barcode text value.

• Angle: <angle> - Turns the barcode in an angle.

• Font: <name> - The show value font name. The default font, if no font is entered

is the font “Calibri”.

• FontSize: <size> - The show value font size. The default font size, if no font size is

entered is 11.

• FGColor: <color> - The barcode foreground color (bars and text color). The default

foreground color, if no foreground color is entered is the

foreground color of the barcode field definition in the template.

• BGColor: <color> - The barcode background color. The default background color, if

no background color is entered is the background color (or table

cell shade) of the barcode field definition in the template.

• WhiteSpace: <width> - The whitespace width on the barcode sides.

• Border: <width> - The barcode border width.

• Bind - Draws a binding border with bars on the top and bottom of the

barcode.

• Box - Draws a box border around the barcode.

 Page 52 of 127

AKIOMA
simplifying complexity

www.akioma.de

Barcode Specific Formats

Code39 and Code39Ext

• CheckDigit - Adds a modulo 10 check digit.

UPCA, UPCE, EAN, ISBN and CCEAN

Note: An EAN2 or EAN5 barcode can be added to the right of the barcode by adding “+<value>”

with the EAN value to the barcode value. For example: “1234567890+12345”.

MSIPlessey

• CheckDigit: <option number> - Adds a check digit. Options:

1. Modulo 10

2. Modulo 10 & Modulo 10

3. Modulo 11

4. Modulo 11 & Modulo 11

RSSExp

Notes: GS1 Application Identifiers (AIs) should be entered using [square brackets] notation. These

will be converted to (round brackets) when the value is shown.

RSSExpStack and CCRSSExpStack

• Cols: <cols> - Number of columns from 1 to 9.

Notes: GS1 Application Identifiers (AIs) should be entered using [square brackets] notation. These

will be converted to (round brackets) when the value is shown.

Channel

• Channels: <channels> - Number of channels from 3 to 8.

OneCode

Notes: Input data consists of a 20 digit tracking code, followed by a dash (“-“), followed by a delivery

point zip-code which can be 0, 5, 9 or 11 digits in length.

Code16K and Code49

• GS1 - GS1 input mode.

PDF417, PDF417Trunc and HIBCPDF417

• Cols: <cols> - Number of columns from 1 to 20.

• Security: <n> - Error correction value from 0 to 8. Number of code words

equals 2(n + 1).

 Page 53 of 127

AKIOMA
simplifying complexity

www.akioma.de

MicroPDF and HIBCMicroPDF

• Cols: <cols> - Number of columns from 1 to 4.

DataMatrix

• Size: <option number> - Resolution size. Options:

 1. 10 x 10

2. 12 x 12

3. 14 x 14

4. 16 x 16

5. 18 x 18

6. 20 x 20

7. 22 x 22

8. 24 x 24

9. 26 x 26

10. 32 x 32

11. 36 x 36

12. 40 x 40

13. 44 x 44

14. 48 x 48

15. 52 x 52

16. 64 x 64

17. 72 x 72

18. 80 x 80

19. 88 x 88

20. 96 x 96

21. 104 x 104

22. 120 x 120

23. 132 x 132

24. 144 x 144

25. 8 x 18

26. 8 x 32

27. 12 x 26

28. 12 x 36

29. 16 x 36

30. 16 x 48

• Square - Adjusts the size using only square sizes.

• GS1 - GS1 input mode.

Note: If no size is entered or the data does not fit in the entered size then the size is adjusted

automatically.

 Page 54 of 127

AKIOMA
simplifying complexity

www.akioma.de

QRCode

• Size: <option number> - Resolution size. Options:

 1. 21 x 21

2. 25 x 25

3. 29 x 29

4. 33 x 33

5. 37 x 37

6. 41 x 41

7. 45 x 45

8. 49 x 49

9. 53 x 53

10. 57 x 57

11. 61 x 61

12. 65 x 65

13. 69 x 69

14. 73 x 73

15. 77 x 77

16. 81 x 81

17. 85 x 85

18. 89 x 89

19. 93 x 93

20. 97 x 97

21. 101 x 101

22. 105 x 105

23. 109 x 109

24. 113 x 113

25. 117 x 117

26. 121 x 121

27. 125 x 125

28. 129 x 129

29. 133 x 133

30. 137 x 137

31. 141 x 141

32. 145 x 145

33. 149 x 149

34. 153 x 153

35. 157 x 157

36. 161 x 161

37. 165 x 165

38. 169 x 169

39. 173 x 173

40. 177 x 177

• Security: <option number> - Error correction. Options:

 1. Approx. 20% of symbol.

2. Approx. 37% of symbol.

3. Approx. 55% of symbol.

4. Approx. 65% of symbol.

Note: If no size is entered or the data does not fit in the entered size then the size is adjusted

automatically.

MicroQR

• Cols: <cols> - Number of columns from 1 to 4.

MaxiCode

• Mode: <mode> - Maxicode mode from 2 to 6. The default mode, if no mode

is entered is mode 4.

Note: Modes 2 and 3 require a primary and secondary value. The value is divided into a primary and

secondary value by a newline character (“\n”). The primary value required format is 9 digits

for mode 2 and 6 alpha numeric characters for mode 3 of post code data (the remaining

characters should be filled with spaces), followed by a 3 digit country code (ISO3166),

followed by a 3 digit service code depending on your parcel courier.

 Page 55 of 127

AKIOMA
simplifying complexity

www.akioma.de

Aztec

• Size: <option number> - Resolution size. Options:

 1. 15 x 15

2. 19 x 19

3. 23 x 23

4. 27 x 27

5. 19 x 19

6. 23 x 23

7. 27 x 27

8. 31 x 31

9. 37 x 37

10. 41 x 41

11. 45 x 45

12. 49 x 49

13. 53 x 53

14. 57 x 57

15. 61 x 61

16. 67 x 67

17. 71 x 71

18. 75 x 75

19. 79 x 79

20. 83 x 83

21. 87 x 87

22. 91 x 91

23. 95 x 95

24. 101 x 101

25. 105 x 105

26. 109 x 109

27. 113 x 113

28. 117 x 117

29. 121 x 121

30. 125 x 125

31. 131 x 131

32. 135 x 135

33. 139 x 139

34. 143 x 143

35. 147 x 147

36. 151 x 151

• Security: <option number> - Error correction. Options:

1. >10% + 3 code words.

2. >23% + 3 code words.

3. >36% + 3 code words.

4. >50% + 3 code words.

• GS1 - GS1 input mode.

Note: If no size is entered or the data does not fit in the entered size then the size is adjusted

automatically.

 Page 56 of 127

AKIOMA
simplifying complexity

www.akioma.de

CodeOne

• Size: <option number> - Resolution size. Options:

 1. 16 x 18

2. 22 x 22

3. 28 x 32

4. 40 x 42

5. 52 x 54

6. 70 x 76

7. 104 x 98

8. 148 x 134

9. 8X height

10. 16X height

• GS1 - GS1 input mode.

Note: If no size is entered or the data does not fit in the entered size then the size is adjusted

automatically.

GridMatrix

• Size: <option number> - Resolution size. Options:

 1. 18 x 18

2. 30 x 30

3. 42 x 42

4. 54 x 54

5. 66 x 66

6. 78 x 78

7. 90 x 90

8. 102 x 102

9. 114 x 114

10. 126 x 126

11. 138 x 138

12. 150 x 150

13. 162 x 162

• Security: <option number> - Error correction. Options:

 1. Approx. 10% of symbol.

2. Approx. 20% of symbol.

3. Approx. 30% of symbol.

4. Approx. 40% of symbol.

5. Approx. 50% of symbol.

Note: If no size is entered or the data does not fit in the entered size then the size is adjusted

automatically.

 Page 57 of 127

AKIOMA
simplifying complexity

www.akioma.de

Composite Barcodes

• Mode: <option number> - The 2D component of the composite symbol. Options:

 1. CC-A

2. CC-B

3. CC-C

Note: Composite barcodes require a primary and secondary value for the linear and 2D component

respectively. The value is divided into a primary and secondary value by a newline character

(“\n”).

HTML/RTF Format

• HTML - For inserting HTML values.

• RTF - For inserting RTF values.

Boolean Format

Booleans fields have no additional optional formatting.

Note: All optional formatting are not case sensitive. For example: “HTML” and “html” refer to the

same optional formatting.

 Page 58 of 127

AKIOMA
simplifying complexity

www.akioma.de

9. Compile the template.

10. Create the .DOCX file.

Copy and run the code below.

#include "dfw.h"

#include <stdio.h>

#include <time.h>

int main()

{

 time_t l_start = clock();

 dfw_load("/opt/DocxFactory/exercises/templates/special_fields.dfw");

 if (dfw_getErrorFlag()) goto ERROR;

 dfw_setClipboardValueByStr("Account", "Account", "12345678901");

 dfw_setClipboardValueByStr("Account", "Active", "false");

 dfw_setClipboardValueByStr("Account", "CustomerPic",

 "/opt/DocxFactory/exercises/images/customer1.png");

 dfw_setClipboardValueByStr("Account", "Comments",

 "<h3>An unordered list:</h3>"

 ""

 "List item"

 "List item"

 "List item"

 "");

 dfw_paste("Account");

 dfw_save("/tmp/special_fields.docx");

 if (dfw_getErrorFlag()) goto ERROR;

 printf("Completed (in %.3f seconds).\n",

 (double) (clock() - l_start) / CLOCKS_PER_SEC);

 return 0;

 ERROR:

 printf("%s\n", dfw_getErrorWhat());

 return 1;

}

 Page 59 of 127

AKIOMA
simplifying complexity

www.akioma.de

The code sets the value for all the special field types:

1. Picture fields are set with a string value of the image file path.

Note: Relative paths are resolved relative to the current working directory. For example:

“dir/image.jpg” is resolved to “[working directory]/dir/image.png”.

Note: The picture inserted as a place holder is only used to define the picture field in the

template. In fact, the picture is removed when compiling the template, leaving the

place holder blank. If the picture field is not set when creating a new document then

no picture is inserted in the place holder and the picture field remains blank.

Note: DocxFactory does not support images in compatibility mode on purpose because of

their many drawbacks, most notably .DOCX files with even a hundred images may

take many minutes and even more to open. To find if the .DOCX file is in

compatibility mode, check if the title bar displays [Compatibility Mode]. To remove

compatibility mode, select Save as from the menu, Word Document and in the Save

as dialog-box make sure the Maintain compatibility with Word 97-2003 checkbox is

not selected.

Note: In most cases, the image files are saved inside the .DOCX file (also called embedded

images) but it is also possible to save only the image files URL instead (also called

linked images) to reduce the .DOCX file size but if the .DOCX file is opened on a

network with no access to the image files then the images will not be displayed.

DocxFactory uses embedded images by default. To use linked images pass an image

file “file://<host>/<directory>/<file>” URL instead. It is recommended to use

embedded images. Use linked images only when necessary.

2. Barcode fields are set with a string value to display as a barcode.

3. HTML/RTF field are set with a string value of the HTML or RTF.

Note: The HTML “<html><body></body></html>” tags (including DTD and other headers)

or the RTF “{\rtf1\ansi\deff0}” definitions are optional. If they are missing then

DocxFactory will add them automatically.

Note: Similar to picture fields, DocxFactory automatically embeds <img src=“<file>”> tag

image files into the document so the document can be sent out and the images can

still be displayed. To force DocxFactory to use linked images, enter an

“http://<host>/<directory>/<file>” or “file://<host>/<directory>/<file>” URL.

4. Boolean fields are set with a number value of 0 or string value of “0”, “0.0”, “no”, “false” for

no and all other values for yes.

 Page 60 of 127

AKIOMA
simplifying complexity

www.akioma.de

10. Open the created .DOCX file (see picture below).

 Page 61 of 127

AKIOMA
simplifying complexity

www.akioma.de

Barcodes 1 Exercise

The following exercise creates a document with sample barcodes.

 Page 62 of 127

AKIOMA
simplifying complexity

www.akioma.de

1. Compile the template.

2. Create the .DOCX file.

Copy and run the code below.

#include "dfw.h"

#include <stdio.h>

#include <time.h>

int main()

{

 time_t l_start = clock();

 dfw_load("/opt/DocxFactory/exercises/templates/barcodes_1.dfw");

 if (dfw_getErrorFlag()) goto ERROR;

 dfw_setClipboardValueByStr("Main", "MyField1", "12345678901");

 dfw_setClipboardValueByStr("Main", "MyField2", "12345678901");

 dfw_setClipboardValueByStr("Main", "MyField3", "12345678901");

 dfw_setClipboardValueByStr("Main", "MyField4", "12345678901");

 dfw_setClipboardValueByStr("Main", "MyField5", "Hello World");

 dfw_setClipboardValueByStr("Main", "MyField6", "Hello World");

 dfw_setClipboardValueByStr("Main", "MyField7", "Hello World");

 dfw_setClipboardValueByStr("Main", "MyField8", "Hello World");

 dfw_setClipboardValueByStr("Main", "MyField9", "Hello World");

 dfw_paste("Main");

 dfw_save("/tmp/barcodes_1.docx");

 if (dfw_getErrorFlag()) goto ERROR;

 printf("Completed (in %.3f seconds).\n",

 (double) (clock() - l_start) / CLOCKS_PER_SEC);

 return 0;

 ERROR:

 printf("%s\n", dfw_getErrorWhat());

 return 1;

}

3. Open barcodes_1.docx in the DocxFactory/exercises/templates/ directory (see picture

below).

 Page 63 of 127

AKIOMA
simplifying complexity

www.akioma.de

4. Open the created .DOCX file (see picture below).

 Page 64 of 127

AKIOMA
simplifying complexity

www.akioma.de

Barcodes 2 Exercise

The following exercise creates a document for printing stickers.

1. Open barcodes_2.docx in the DocxFactory/exercises/templates/ directory.

Open the Bookmark dialog box and go through and highlight the bookmarks (see picture

below).

The template has a Row and Cell items like a table and you can paste the Row and Cell items like you

would for creating a table. There is also a Main top level item because if the Row item was a top level

item then it would start in a new page every time it was pasted and a dummy item which is never

pasted and its only purpose is to help differentiate between the Row and Main items.

 Page 65 of 127

AKIOMA
simplifying complexity

www.akioma.de

2. Draw a rounded rectangle over the first Cell item.

Place the cursor before “{Desc}” field. Select rounded rectangle from the Shapes drop down

menu in the Insert ribbon and draw a rounded rectangle over the first cell item (see picture

below).

3. Position the rounded rectangle.

Right click the rounded rectangle and select Format AutoShape from the drop down menu.

Click the Advanced button in the Layout tab. Set Horizontal Alignment: Left relative to: Left

Margin and Vertical Alignment: Top relative to: Top Margin in the Picture Position tab and

Select Layout in table cell (see picture below).

 Page 66 of 127

AKIOMA
simplifying complexity

www.akioma.de

4. Set the rounded rectangle size.

Select the Size tab in the Format AutoShape dialog box. Set the Height to Absolute: 1.6" and

Width to Absolute: 2.05" (see picture below).

5. Remove the rounded rectangle fill color and keep only the shape outline.

Select No Fill in the Fill drop down menu in the Format ribbon (see picture below).

6. Repeat steps 2 to 5 for the second and third Cell items.

 Page 67 of 127

AKIOMA
simplifying complexity

www.akioma.de

7. Unselect the Allow row to break across pages for the Row item so either the entire row fits in

the page or the row is moved to the next page.

Select the Row bookmark from the Bookmarks dialog box. Right click the highlighted area

and select Table Properties from the drop down menu and unselect the Allow row to break

across pages in the Row tab (see picture below).

8. Remove the page bottom margin. Word adds a paragraph after a table. If the table fills the

page then the paragraph will overflow adding an empty page. You can remove or shorten the

page bottom margin to make space for the paragraph.

Select the Custom Margins from the Margins drop down menu in the Page Layout ribbon. Set

the Bottom Margins: 0" in the Margins tab (see picture below).

 Page 68 of 127

AKIOMA
simplifying complexity

www.akioma.de

9. Compile the template.

10. Create the .DOCX file.

Copy and run the code below.

#include "dfw.h"

#include <string.h>

#include <stdio.h>

#include <time.h>

int main()

{

 time_t l_start = clock();

 dfw_load("/opt/DocxFactory/exercises/templates/barcodes_1.dfw");

 if (dfw_getErrorFlag()) goto ERROR;

 dfw_paste("Main");

 for (int i = 0; i < 20; i++)

 {

 int j = (i + 1) % 3;

 if (j == 0) j = 3;

 if (j == 1)

 dfw_paste("Row");

 dfw_setClipboardValueByStr("", "Desc", "Hello World");

 dfw_setClipboardValueByStr("", "PartNum", "12345678901");

 char str[10];

 strcpy(str, "Cell ");

 str[strlen(str) - 1] = (char) ('0' + j);

 dfw_paste(str)

 }

 dfw_save("/tmp/barcodes_1.docx");

 if (dfw_getErrorFlag()) goto ERROR;

 printf("Completed (in %.3f seconds).\n",

 (double) (clock() - l_start) / CLOCKS_PER_SEC);

 return 0;

 ERROR:

 printf("%s\n", dfw_getErrorWhat());

 return 1;

}

 Page 69 of 127

AKIOMA
simplifying complexity

www.akioma.de

11. Open the created .DOCX file (see picture below).

 Page 70 of 127

AKIOMA
simplifying complexity

www.akioma.de

Chart Fields

Charts are another special field. A big difference between charts and other fields is that unlike other

fields which only hold a single value, charts hold multiple values. In most cases, charts display a value

as a column at the height of the value for a sequence of categories. Other series of values (for the

same categories) can be displayed in a different color. So charts hold a matrix of values by categories

and series.

There are several exceptions:

1. Single series charts - That can only have a single series like Pie charts (Doughnut charts

are not a single series charts like Pie charts because they can have

multiple series represented by different rings).

2. Fixed series charts - That have a fixed number of series like Stock and Composite charts.

3. X, Y, Size charts - That hold a list of X, Y, Size values like Scatter and Bubble charts

instead of a values matrix by series and categories.

Chart Fields Exercise

1. Open a new blank document and insert a column chart.

Open a new blank document. Select Chart in the Insert ribbon to open the Insert Chart dialog

box and select Clustered Column Chart from the Insert Chart dialog box (see picture below).

 Page 71 of 127

AKIOMA
simplifying complexity

www.akioma.de

2. Change the categories data type and format.

After you insert a chart the values matrix by categories and series is opened and can be

edited in Excel. Insert date values for the categories and set the format to month and year

(see picture below).

Just like all other fields, you set the data types and formats in the template and insert the values

when creating a new document so all the values and number of series, categories and values will be

removed and replaced with the values you insert but the data types and formats will remain.

The series are the names of series of values by categories so they can only be text values. The

sequence of categories can be date, number or text values. The values are represented by column

heights so they can only be number values. Except for X, Y, Size charts which hold a list of X, Y, Size

number values.

 Page 72 of 127

AKIOMA
simplifying complexity

www.akioma.de

3. Enter the chart field name.

Select the chart. Click the corner of the Size group in the Format ribbon to open the Size

dialog box. Select the Alt Text tab in the Size dialog box and enter "{ExpenseChart}" in the

Alternative Text box (see picture below).

 Page 73 of 127

AKIOMA
simplifying complexity

www.akioma.de

4. Compile the template.

5. Create the .DOCX file.

Copy and run the code below.

#include "dfw.h"

#include <stdio.h>

#include <time.h>

int main()

{

 time_t l_start = clock();

 dfw_load("/opt/DocxFactory/exercises/templates/chart.dfw");

 if (dfw_getErrorFlag()) goto ERROR;

dfw_setChartValueByStrStr("","ExpenseChart","Income","2015-01-01", 3600.0);

dfw_setChartValueByStrStr("","ExpenseChart","Income","2015-02-01", 3600.0);

dfw_setChartValueByStrStr("","ExpenseChart","Income","2015-03-01", 3600.0);

dfw_setChartValueByStrStr("","ExpenseChart","Income","2015-04-01", 4200.0);

dfw_setChartValueByStrStr("","ExpenseChart","Income","2015-05-01", 4200.0);

dfw_setChartValueByStrStr("","ExpenseChart","Expense","2015-01-01", 1000.0);

dfw_setChartValueByStrStr("","ExpenseChart","Expense","2015-02-01", 1200.0);

dfw_setChartValueByStrStr("","ExpenseChart","Expense","2015-03-01", 1300.0);

dfw_setChartValueByStrStr("","ExpenseChart","Expense","2015-04-01", 1100.0);

dfw_setChartValueByStrStr("","ExpenseChart","Expense","2015-05-01", 2200.0);

 dfw_save("/tmp/chart.docx");

 if (dfw_getErrorFlag()) goto ERROR;

 printf("Completed (in %.3f seconds).\n",

 (double) (clock() - l_start) / CLOCKS_PER_SEC);

 return 0;

 ERROR:

 printf("%s\n", dfw_getErrorWhat());

 return 1;

}

Note: That no items were created in the template and no items were pasted in the code.

DocxFactory supports templates that have only fields for such cases as simple letters.

 Page 74 of 127

AKIOMA
simplifying complexity

www.akioma.de

The code introduces the dfw_setChartValue* functions (see details below).

dfw_setChartValue* Function

Sets a value in the chart field values matrix by category and series.

There are several exceptions:

1. Single series charts - For charts that can only have a single series like Pie charts, the

dfw_setChartValue* functions ignores the series name parameter.

The series name in the created document is the same series name

in the template.

2. Fixed series charts - For charts that have a fixed number of series like Stock and

Composite charts, the dfw_setChartValue* functions only accepts

values for the fixed series that were in the template. Values for

other series are ignored and are not set.

3. X, Y, Size charts - For charts that hold a list of X, Y, Size values like Scatter and Bubble

charts, the dfw_setChartValue* functions treats the 1st parameter

as the X value, the 2nd parameter as the Y value and the 3rd

parameter as the Size value.

Declaration:

1. unsigned char dfw_setChartValueByStrStr(

const char* p_itemName,

const char* p_fieldName,

const char* p_series,

const char* p_category,

double p_value);

2. unsigned char dfw_setChartValueByStrDouble(

const char* p_itemName,

const char* p_fieldName,

const char* p_series,

double p_category,

double p_value);

3. unsigned char dfw_setChartValueByDoubleDouble(

const char* p_itemName,

const char* p_fieldName,

double p_x,

double p_y,

double p_size);

Parameters:

p_itemName - Item name.

p_fieldName - Field name.

p_series - Series name.

p_category - Category.

p_value - Value.

p_x - X.

p_y - Y.

p_size - Size.

 Page 75 of 127

AKIOMA
simplifying complexity

www.akioma.de

Notes:

• The sort order of the chart series and categories in the created document is the order you

add them to the values matrix.

• The series and categories (if the categories values are text) are not case sensitive. For

example: the series "Income" and "income" refer to the same series but the chart series and

categories in the created document use the series and categories casing when they were first

added with the exception of single series charts and fixed series charts that keep the series

casing in the template.

• Every time you add a new column or row to the values matrix by adding a new series or

category the new values are initialized with a value of zero. For example: if you add a new

series and not set one of the values for a category for that series then its value will be zero.

• An empty chart with no values cannot be shown so if no values are set for a chart field then

the chart will not be in the created document.

• If a value for the same category and series is set more than once then the value is

accumulated so you can set a chart field from a detailed list that will be summarized by

categories and series.

• The dfw_setChartValue* functions is the equivalent dfw_setClipboardValue* functions for

chart fields and has the same rules for item and field casing, setting date and time values and

converting between different field and parameter data types.

 Page 76 of 127

AKIOMA
simplifying complexity

www.akioma.de

6. Open the created .DOCX file (see picture below).

 Page 77 of 127

AKIOMA
simplifying complexity

www.akioma.de

Merge XML and JSON

DocxFactory allows you to merge XML and JSON (and any data structure that you can convert to XML

and JSON) in a single merge function instead of using multiple dfw_setClipboardValue* and

dfw_paste functions.

Merge XML and JSON Exercise

1. Open merge.docx in the DocxFactory/exercises/templates/ directory.

Open the Bookmark dialog box to view the bookmarks. The template continues the fields

exercise (see picture below).

 Page 78 of 127

AKIOMA
simplifying complexity

www.akioma.de

2. Compile the template.

3. Create the .DOCX file.

Copy and run the code below.

#include "dfw.h"

#include <stdio.h>

#include <time.h>

int main()

{

 time_t l_start = clock();

 dfw_load("/opt/DocxFactory/exercises/templates/merge.dfw");

 if (dfw_getErrorFlag()) goto ERROR;

 dfw_merge(

"<Accounts>"

"<Account>"

"<Line>"

"<LineDate>1/1/99</LineDate><LineAmt>0</LineAmt><LineDesc>Desc0</LineDesc>"

"</Line>"

"<Line>"

"<LineDate>1/1/99</LineDate><LineAmt>1</LineAmt><LineDesc>Desc1</LineDesc>"

"</Line>"

"</Account>"

"</Accounts>");

 dfw_merge(

"{\"Account\": [{"

 "\"Line\": [{"

 "\"LineDate\": \"1/1/99\", \"LineAmt\": 2, \"LineDesc\": \"Desc2\""

 "}, {"

 "\"LineDate\": \"1/1/99\", \"LineAmt\": 3, \"LineDesc\": \"Desc3\""

 "}]"

"}]}");

 dfw_save("/tmp/merge.docx");

 if (dfw_getErrorFlag()) goto ERROR;

 printf("Completed (in %.3f seconds).\n",

 (double) (clock() - l_start) / CLOCKS_PER_SEC);

 return 0;

 ERROR:

 printf("%s\n", dfw_getErrorWhat());

 return 1;

}

 Page 79 of 127

AKIOMA
simplifying complexity

www.akioma.de

The code introduces the dfw_merge function (see details below).

dfw_merge Function

Merges XML or JSON with the template. The dfw_merge function recognizes if the string passed to

the function is XML or JSON from the beginning of the string.

When merging XML, DocxFactory drills down the entire XML document. When it reaches a node with

the same name as an item, it reads all the node children with the same name as the item fields and

sets the field clipboard value with the node content, it then pastes the item and continues drilling the

rest of the children (that are not field nodes).

When merging JSON, DocxFactory drills down the entire JSON document. When it reaches an object

property with the same name as an item or an object in an array property with the same name as an

item, it reads all the value properties (string, number, boolean or null values) with the same name as

the item fields and sets the field clipboard value with the property value, it then pastes the item and

continues drilling the object.

Declaration:

unsigned char merge(const char* p_data);

Parameters:

p_data – XML or JSON string.

 Page 80 of 127

AKIOMA
simplifying complexity

www.akioma.de

Merge XML Notes:

• To make the merge simple and flexible, DocxFactory finds item nodes only if the node name

matches an item name and does not take into consideration the node parents so you can put

the node in another container node (for example: <items><item/>…</items>) or not put the

node in any other node (except the document root node) and it would not change the result.

• When reading an item node, if a child node has the same name of both an item field and

another item, DocxFactory will treat the node as a field because there is no way of knowing if

the node is meant to be used as a field or an item. To avoid confusion between items and

fields, do not name items and fields with the same name.

• To set a chart field, in the field node insert a list of point nodes with a series, category and

value nodes and their values. For example: <chart><point><series>Amount</series>

<category>01/01/1999</category><value>100</value></point>…</chart>. You can also use

<x>, <y> and <size> tags instead of <series>, <category> and <value> tags for X, Y and Size

charts.

• DocxFactory supports CDATA sections for entering data that is not parsed and may contain

illegal XML characters (like "<" and "&") without the need to escape these characters. You

can use CDATA to set HTML and RTF field values or any field values that may contain illegal

XML characters without the need to escape these characters.

• When setting a field value from the content of a node, the complete inner node content is

used including XML tags not just text which allows you to enter HTML tags for HTML fields.

Note that even though HTML in some cases may not be well formed, the node content must

be well formed XML otherwise you will have to use a CDATA section.

• To enter new lines in field values, use a new line character (ASCII #10) or escape the

character using the "
" XML entity. "\n" is not a character escape sequence in XML.

• The item names are not case sensitive. For example: the tag name “<Account>” and

“<account>” refer to the same item.

• The field names are not case sensitive. For example: the tag name “<LineDate>” and

“<linedate>” refer to the same field.

 Page 81 of 127

AKIOMA
simplifying complexity

www.akioma.de

Merge JSON Notes:

• Just like merging XML, DocxFactory finds item objects only if the object property name

matches an item name and does not take into consideration the object parents so you can

put the object in another container object or even put all the items in object properties in an

array of objects in the document root object (for example: {"items": [{"item": {}}, ...]}) and it

would not change the result.

• To set a chart field, in the field property value enter an array of objects with a series,

category and value properties and their values. For example: "chart": [{"series": "Amount",

"category": "01/01/1999", "value": 100}, …]. You can also use "x":, "y": and "size": properties

instead of "series":, "category": and "value": properties for X, Y and Size charts.

• The JSON property names must be enclosed in quotes according to the JSON specification

otherwise a JSON parsing error will be returned.

• The item names are not case sensitive. For example: the property name "Account": and

"account": refer to the same item.

• The field names are not case sensitive. For example: the property name "LineDate": and

"linedate": refer to the same field.

 Page 82 of 127

AKIOMA
simplifying complexity

www.akioma.de

4. Open the created .DOCX file (see picture below).

 Page 83 of 127

AKIOMA
simplifying complexity

www.akioma.de

Border Conflicts

This chapter shows a common problem and its solution.

Border Conflicts Exercise

1. Open border_conflicts.docx in the DocxFactory/exercises/templates/ directory, open the

Bookmarks dialog box and highlight the Line item (see picture below).

The problem is that the Line item shares a border with the report summary and there is no separate

bottom border for the Line item and a separate top border for the report summary, to set with

different border styles.

To fix this problem create a dummy item between them. The dummy item is not pasted and is only

used to separate the items. After the dummy item is added there is a separate bottom border for the

Line item and a separate top border for the report summary that can be set with different border

styles.

When creating a new document and pasting items, if items meet on the same border with different

border styles then, in general the bigger border will overtake the smaller border (the thicker border,

the border with the most lines etc.).

 Page 84 of 127

AKIOMA
simplifying complexity

www.akioma.de

2. First, insert a new row between the items.

Place the cursor on the bottom of the Date column and select Insert Below in the Layout

ribbon (see picture below).

3. Then change the Line item bottom border.

Highlight the Line item, right click the highlighted area and select Borders and Shading from

the drop down menu. In the Borders and Shading dialog box, change the bottom border to a

single line (see picture below).

 Page 85 of 127

AKIOMA
simplifying complexity

www.akioma.de

4. Finally, create a bookmark for the dummy item (see picture below).

Dummy items are not pasted or referenced and there is no need to give them meaningful

names. Dummy items are named “Dummy<n>” by convention.

 Page 86 of 127

AKIOMA
simplifying complexity

www.akioma.de

5. Compile the template.

6. Create the .DOCX file.

Copy and run the code below.

#include "dfw.h"

#include <stdio.h>

#include <time.h>

int main()

{

 time_t l_start = clock();

 dfw_load("/opt/DocxFactory/exercises/templates/border_conflicts.dfw");

 if (dfw_getErrorFlag()) goto ERROR;

 dfw_paste("Account");

 for (int i = 0; i < 3; i++)

 {

 dfw_paste("Line");

 }

 dfw_save("/tmp/border_conflicts.docx");

 if (dfw_getErrorFlag()) goto ERROR;

 printf("Completed (in %.3f seconds).\n",

 (double) (clock() - l_start) / CLOCKS_PER_SEC);

 return 0;

 ERROR:

 printf("%s\n", dfw_getErrorWhat());

 return 1;

}

 Page 87 of 127

AKIOMA
simplifying complexity

www.akioma.de

7. Open the created .DOCX file.

As you can see, the Line item bottom border has a different border style than the report

summary top border style and on the border where the Line item and the report summary

meet the report summary overtakes the Line item border style (see picture below).

 Page 88 of 127

AKIOMA
simplifying complexity

www.akioma.de

Alternating Colors

Items marked as alternating color in the template will alternate between two colors in the new

document.

The two alternating colors are taken from the color of the first table cell in the first table row of the

first and second items in the group (alternating colors is currently only supported for tables). If there

is only one item then the second color is no color.

The items in the group (that are marked as alternating color) color will alternate between the two

colors in the new document.

Alternating Colors Exercise

1. Open alternating_colors.docx in the DocxFactory/exercises/templates/ directory (see picture

below).

Note: Continuing from the previous chapter, the template has a dummy item to separate

between the Withdraw item and the report summary.

 Page 89 of 127

AKIOMA
simplifying complexity

www.akioma.de

2. Add _alternate to the bookmark name to mark the item as alternating color.

You cannot change a bookmark name so you will need to delete and re-enter the bookmark

with a different name.

1. In the bookmark Dialog box, highlight the bookmark by selecting the bookmark and

pressing the Go To.

2. Delete the bookmark with the Delete button.

3. Re-enter the bookmark name and add _alternate to the name. Press the Add button to

add the bookmark for the highlighted area (see picture below).

 Page 90 of 127

AKIOMA
simplifying complexity

www.akioma.de

3. Change the color of the second item so the color of the first and second items is different.

First, highlight the Withdraw item (you can either highlight the area manually or using the

Bookmark dialog box). Then select a light gray from the Shading drop down menu in the

Design ribbon (see picture below).

The exercise introduces the alternate feature (see details below).

_alternate

_alternate marks an item as alternating color.

Note: Item features are written to the end of the bookmark name.

Note: The features in the bookmark name are removed from the item name.

For example: The bookmark "MyItem_alternate" item name is "MyItem".

Note: The features in the bookmark name like the item names are not case sensitive.

For example: "_alternate" and "_Alternate" refer to the same feature.

 Page 91 of 127

AKIOMA
simplifying complexity

www.akioma.de

4. Compile the template.

5. Create the .DOCX file.

Copy and run the code below.

#include "dfw.h"

#include <stdio.h>

#include <time.h>

int main()

{

 time_t l_start = clock();

 dfw_load("/opt/DocxFactory/exercises/templates/alternating_color.dfw");

 if (dfw_getErrorFlag()) goto ERROR;

 dfw_paste("Account");

 for (int i = 0; i < 3; i++)

 {

 dfw_paste("Deposit");

 }

 for (int i = 0; i < 3; i++)

 {

 dfw_paste("Withdraw");

 }

 dfw_save("/tmp/alternating_color.docx");

 if (dfw_getErrorFlag()) goto ERROR;

 printf("Completed (in %.3f seconds).\n",

 (double) (clock() - l_start) / CLOCKS_PER_SEC);

 return 0;

 ERROR:

 printf("%s\n", dfw_getErrorWhat());

 return 1;

}

 Page 92 of 127

AKIOMA
simplifying complexity

www.akioma.de

6. Open the created .DOCX file.

As you can see, in the new document the color of the items in the group alternates between

the two colors (see picture below).

 Page 93 of 127

AKIOMA
simplifying complexity

www.akioma.de

Sections

In Microsoft Word, documents can be divided into sections and you can set a different page size and

page orientation (but also other settings like header and footer) for every section. To divide a

document into sections, insert a section break (which ends the previous section and starts a new

section).

A single page cannot have two or more sections because every section has a different page type (page

size and page orientation) so a section break (which ends the previous section and starts a new

section) is also a page break. Just like regular page breaks, items should be placed between section

breaks (or regular page breaks) and section breaks should not be placed inside items (see the chapter

on top level items for a detailed explanation).

When designing a template, you set in what section the page the top level item starts is in. When

creating a new document, if a new page is started when pasting a top level item that is in a different

section than the last page then a section break is inserted and the same section page size and page

orientation as the new page section are set. So the page the top level item starts is the same page

type (page size and page orientation) in the created document and the template no matter what

order the top level item is pasted.

Sections Exercise

1. Open sections.docx in the DocxFactory/exercises/templates/ directory.

Open the Bookmark dialog box to view the items in the template. There are 2 top level items:

Page1 and Page2 (see picture below).

 Page 94 of 127

AKIOMA
simplifying complexity

www.akioma.de

2. Insert a section break between the two items.

First place the cursor at the beginning of the second item. Then select Next Page, under

Section Breaks, in the Breaks drop down menu, in the Page Layout ribbon (see picture

below).

As you can see, a section break is also a page break.

3. Change the section page orientation to landscape.

First make sure the cursor is on the second page. Then select Landscape, in the Orientation

drop down menu, in the Page Layout ribbon (see picture below).

 Page 95 of 127

AKIOMA
simplifying complexity

www.akioma.de

4. Compile the template.

5. Create the .DOCX file.

Copy and run the code below.

#include "dfw.h"

#include <stdio.h>

#include <time.h>

int main()

{

 time_t l_start = clock();

 dfw_load("/opt/DocxFactory/exercises/templates/sections.dfw");

 if (dfw_getErrorFlag()) goto ERROR;

 dfw_paste("Page2");

 dfw_paste("Page1");

 dfw_paste("Page2");

 dfw_paste("Page1");

 dfw_save("/tmp/sections.docx");

 if (dfw_getErrorFlag()) goto ERROR;

 printf("Completed (in %.3f seconds).\n",

 (double) (clock() - l_start) / CLOCKS_PER_SEC);

 return 0;

 ERROR:

 printf("%s\n", dfw_getErrorWhat());

 return 1;

}

 Page 96 of 127

AKIOMA
simplifying complexity

www.akioma.de

6. Open the created .DOCX file.

As you can see, the page the top level item starts is the same page type (page size and page

orientation) in the created document and the template no matter what order the top level

item is pasted (see picture below).

 Page 97 of 127

AKIOMA
simplifying complexity

www.akioma.de

Table of Contents Automatic Update

In general, to find the page numbers in the table of contents the entire document has to be

graphically rendered and the only way to do that is to open the document in Microsoft Word.

Specifically, there are 4 possible ways to update the table of contents but none of them are without

problems:

1. Mark the update fields flag in the document that tells Word to update the table of contents

when opening the document. The problem with this approach is that a popup message will

open when opening the document prompting the user to confirm the update instead of

updating the table of contents automatically when opening the document.

2. Use Word Automation Services to open the document in Word, update the table of contents

and save the document in the background. The problem with this approach is that opening a

document, updating the table of contents and saving the document can take substantially

longer than creating the document, from half a second to several seconds depending on the

size of the document.

3. Add a macro to the Normal.dotm (which is the base template for new documents and is

opened when Word opens) that updates the table of contents when opening a document.

The problems with this approach are that: 1. The macro has to be added to the Normal.dotm

of every Word installation and 2. The macro will update the table of contents of every

document opened in Word.

4. Add a macro to the document that updates the table of contents when opening the

document. Just like marking the update fields flag, a security popup message will also open

when opening the document prompting the user if it is safe to run the macro. Because this

approach basically behaves the same as marking the update fields flag, DocxFactory currently

has no support for this approach.

 Page 98 of 127

AKIOMA
simplifying complexity

www.akioma.de

Table of Contents Automatic Update Exercise

1. Open toc.docx in the DocxFactory/exercises/templates/ directory.

Open the Bookmark dialog box to view the items in the template. There is a “toc” top level

item for the table of contents page and a “title1” top level item with a “title2” sub level item

with titles that will be in the table of contents (see picture below).

 Page 99 of 127

AKIOMA
simplifying complexity

www.akioma.de

2. The "Heading" styles mark the titles in the document that will be in the table of contents.

The biggest "Heading 1" style marks the highest level title down to the smallest "Heading 5"

style that marks the lowest level title. Although the table of contents does not show titles

lower than 3 levels.

Highlight the “Title1” paragraph and select the “Heading 1” style from the Styles group in the

Home ribbon. Do the same from the “Title2” paragraph with the “Heading 2” style (see

picture below).

Note: The “Heading” styles and all the styles in the document, font, size, color etc. can be modified

by right-clicking the style in the Styles group and selecting Modify.

 Page 100 of 127

AKIOMA
simplifying complexity

www.akioma.de

3. Insert the table of contents.

First place the cursor in the “toc” top level item at the beginning of the document. Then

select the Automatic Table 2 from the Table of Contents drop down list in the References

ribbon (see picture below).

Note: If the table of contents direction is right-to-left and you would like it to be left-to-right or vice

versa then open the Page Setup dialog box in the Page Layout ribbon, select the Layout tab

and set the direction in the Section Direction field.

 Page 101 of 127

AKIOMA
simplifying complexity

www.akioma.de

4. Compile the template.

5. Create the .DOCX file.

Copy and run the code below.

#include "dfw.h"

#include <stdio.h>

#include <time.h>

int main()

{

 dfw_setUpdateTocMethod(1);

 time_t l_start = clock();

 dfw_load("/opt/DocxFactory/exercises/templates/toc.dfw");

 if (dfw_getErrorFlag()) goto ERROR;

 dfw_paste("toc");

 for (int i = 0; i < 2; i++)

 {

 dfw_paste("title1");

 for (int j = 0; j < 3; j++)

 {

 dfw_paste("title2");

 }

 }

 dfw_save("/tmp/toc.docx");

 if (dfw_getErrorFlag()) goto ERROR;

 printf("Completed (in %.3f seconds).\n",

 (double) (clock() - l_start) / CLOCKS_PER_SEC);

 return 0;

 ERROR:

 printf("%s\n", dfw_getErrorWhat());

 return 1;

}

 Page 102 of 127

AKIOMA
simplifying complexity

www.akioma.de

The code introduces the dfw_setUpdateTocMethod function (see details below).

dfw_setUpdateTocMethod Function

Sets the method to use to update the table of contents if there is a table of contents in the document.

Declaration:

void dfw_setUpdateTocMethod(unsigned char p_method);

Values:

0 – Turns off the DocxFactory table of contents automatic update. This

method can be used to update the table of contents with a macro in

the Normal.dotm.

1 - Sets the update fields flag in the document that tells Word to update

the table of contents when opening the document. This is the default

value if no value is set.

2 – Use Word Automation Services to open the document, update the table

of contents and save the document in the background.

Notes:

• The update table of contents method is a global setting that is not reset every time a new

document is created.

 Page 103 of 127

AKIOMA
simplifying complexity

www.akioma.de

6. Open the created .DOCX file (see picture below).

As you can see, a popup message opens when opening the document prompting the user to

confirm the update.

7. Set the update method to 2, run the code and open the created .DOCX file.

As you can see, the table of contents was automatically updated and there was no popup

message when opening the document but creating the document (and also updating the

table of contents) took substantially longer this time.

 Page 104 of 127

AKIOMA
simplifying complexity

www.akioma.de

8. Set the update method to 0 and add a macro to the Normal.dotm.

Open the Visual Basic for Word Editor from the Code group in the Developer ribbon. Select

the NewMacros section in the Normal document, copy the AutoOpen macro below and save

(see picture below).

Note: Remember that 1. this macro has to be added on every computer that can open created

documents and 2. this macro will update the table of contents of every document opened

on this computer.

 Page 105 of 127

AKIOMA
simplifying complexity

www.akioma.de

Introduction to Paging

All the exercises so far only created a single page but reports can and often have multiple pages and

rules how to divide the report into pages are needed.

For example:

• If a table overflows onto the next page then repeat the column labels, header or title rows

when continuing in the next page.

• Some items cannot be split and must stay whole so either the entire item fits in the page or

the item is moved to the next page.

• Some items cannot be separated from their previous item so if the item is moved to the next

page then the previous items are moved with him.

Both Word and DocxFactory have their own paging features for dividing the report into pages each

with its own advantages and disadvantages but you can only use one, you cannot use both.

 Page 106 of 127

AKIOMA
simplifying complexity

www.akioma.de

Word Paging Features

The Word paging features are easy to use but Word only has basic paging features.

Word Paging Exercise

4. Open word_paging.docx in the DocxFactory/exercises/templates/ directory (see picture

below).

 Page 107 of 127

AKIOMA
simplifying complexity

www.akioma.de

5. Mark the table rows from the first table row to the column labels (including the column

labels) in the Account item as Repeat Header so they will be repeated for every page.

Because you can only have one level of repeating headers in the Word paging features, you

can either mark the report header and the column labels or only the column labels as Repeat

Header.

Highlight the table rows from the first table row to the column labels (including the column

labels) in the Account item and select the Repeat Header Rows in the Layout ribbon (see

picture below).

 Page 108 of 127

AKIOMA
simplifying complexity

www.akioma.de

6. Chain the table rows of the Withdraw, Deposit and Summary items using Keep with next so

the table rows cannot be split across pages and must stay whole.

Highlight the first table row of the Withdraw and Deposit line items and the first 3 table rows

of the Summary item, open the Paragraph dialog box in the Home ribbon and select Keep

with next in the Line and Page Breaks tab (see picture below).

7. Select the Keep lines together for the Comment item so the paragraph lines cannot be split

across pages and must stay whole.

Highlight the comment item, open the Paragraph dialog box in the Home ribbon and select

Keep lines together in the Line and Page Breaks tab (see picture below).

 Page 109 of 127

AKIOMA
simplifying complexity

www.akioma.de

The exercise introduces the most common Word paging features.

Repeat Header Rows

If a table overflows onto the next pages then the top table rows marked as repeat header will repeat

when continuing in the next pages.

Note: The repeat header rows must start from the first table row. If you want to start the repeat

header after the first table row then you will need to split the table where the repeat header

starts.

Note: Repeat header does not work for nested tables, which means there can only be one level of

repeat header rows for the top level table starting at the first table row, which greatly limits

its possible uses.

Keep with Next

Keep with next says that the paragraph cannot be separated from the next paragraph so if the next

paragraph does not fit in the page and is moved to the next page then it takes the paragraph with it.

Keep with next is mostly used to chain multiple paragraphs or table rows (using the paragraphs in the

table row) to a single unit that cannot be separated so either all of them fit in the page or they are all

moved together to the next page.

The paragraphs are chained together by marking all the paragraphs keep with next except for the last

paragraph to stop the chaining.

Keep Lines Together

Keep lines together says that the paragraph cannot be split into lines so either the paragraph fits in

the page or the entire paragraph is moved to the next page.

Keep lines together only works on a single paragraph and cannot be used to keep multiple paragraphs

or table rows together, use keep with next for that.

Note: Keep lines together is completely ignored and has no effect in table rows, which greatly limits

its possible uses.

Allow row to break across pages

Another important paging feature especially for rows with a height of several lines is Allow row to

break across pages in the Row tab, in the Table Properties dialog box.

If Allow row to break across pages is not selected then the row and its content cannot be split across

pages and either the entire row fits in the page or it is moved to the next page.

 Page 110 of 127

AKIOMA
simplifying complexity

www.akioma.de

8. Compile the template.

9. Create the .DOCX file.

Copy and run the code below.

#include "dfw.h"

#include <stdio.h>

#include <time.h>

int main()

{

 time_t l_start = clock();

 dfw_load("/opt/DocxFactory/exercises/templates/word_paging.dfw");

 if (dfw_getErrorFlag()) goto ERROR;

 dfw_paste("Account");

 for (int i = 0; i < 10; i++)

 {

 dfw_paste("Withdraw");

 }

 for (int i = 0; i < 9; i++)

 {

 dfw_paste("Deposit");

 }

 dfw_paste("Total");

 dfw_paste("Summary");

 for (int i = 0; i < 3; i++)

 {

 dfw_setClipboardValueByStr("Comment", "Comment",

 "CommentLine1\n"

 "CommentLine2\n"

 "CommentLine3\n"

 "CommentLine4\n"

 "CommentLine5");

 dfw_paste("Comment");

 }

 dfw_save("/tmp/word_paging.docx");

 if (dfw_getErrorFlag()) goto ERROR;

 printf("Completed (in %.3f seconds);\n",

 (double) (clock() - l_start) / CLOCKS_PER_SEC);

 return 0;

 ERROR:

 printf("%s\n", dfw_getErrorWhat());

 return 1;

}

 Page 111 of 127

AKIOMA
simplifying complexity

www.akioma.de

10. Open the created .DOCX file (see picture below).

You can change the number of line items, number of comments etc. in the code and recreate

the new document to see how the report is divided into pages.

 Page 112 of 127

AKIOMA
simplifying complexity

www.akioma.de

DocxFactory Paging Features

The DocxFactory paging features are more complicated to use but DocxFactory has more advanced

paging features. The basic rule of thumb is that you should use the Word paging features whenever

you can and use the DocxFactory paging features when you have to.

The difference between Word and DocxFactory paging is that Word renders files to printed

documents so it knows the size of everything, paragraph, table row, picture etc. and if the page is

filled so it can be divided using the paging rules.

But DocxFactory does not render files because rendering files to printed documents would almost be

like rewriting Word so it cannot know the size of everything and if the page is filled. Instead, in

DocxFactory sizes are measured in table rows. You set the page size in number of table rows and item

sizes are the number of table rows in them.

For table rows with a different height than the rest of the table rows or anything other than table

rows like paragraphs you can set their equivalent table row size manually. DocxFactory can also

calculate item sizes with nested tables (see picture below).

A limit with measuring sizes in table rows is that if you insert a multiline text in a table row that

expands the table row height, to DocxFactory it will still be one table row in height even though it

might now have the height of several table rows so table rows height cannot be expanded except by

other table rows inside them, as explained above.

If you plan to insert multiline text values then you have 2 options: 1. Use a static table row height that

is big enough to hold all possible values by either setting the table row height or merging several table

rows (usually used for small 2-3 line texts). 2. Breaking the multiline text into single lines and inserting

every line into its own child table row expanding the table row height dynamically (usually used for

big multiline texts).

A table row border also has a size even though it is very small all the table rows borders in a page can

add up to the size of another table row. Because DocxFactory measures sizes in table rows, the table

rows with borders and table rows without borders should have the same size otherwise pages that

use more table rows without borders will be slightly shorter. To make table rows without borders

have the same size as table rows with borders add a white border (or the same color as the

background) for table rows without borders.

4 Table Rows

Size

 Page 113 of 127

AKIOMA
simplifying complexity

www.akioma.de

DocxFactory Paging Exercise

4. Open docxfactory_paging.docx in the DocxFactory/exercises/templates/ directory.

Open the Bookmark dialog box, sort the bookmarks by location and go through and highlight

the bookmarks (see picture below).

The template contains the following bookmarks (see details below):

1. Account_size6d5_pageSize45

Because the account item is the top level item for all the items in the report, the account

item with its header at the top will be repeated for every page in the report.

_pageSize45 sets the size of the page the top level item starts to 45 table rows.

Because account item has table rows with a different size than the rest of the table rows,

_size6d5 is used to set the size to 6.5 table rows (excluding child items and the table rows

with child items in them).

2. Detail

The detail item contains the column labels for the deposit and withdraw line items.

The detail item with its column labels will be repeated if a line item does not fit in the page

and is moved to the next page.

3. Deposit_alternate

The deposit line item.

_alternate marks the item as alternating color.

 Page 114 of 127

AKIOMA
simplifying complexity

www.akioma.de

4. Withdraw_alternate

The withdraw line item.

_alternate marks the item as alternating color.

5. Filler1_size2

Fills the page to its full size and divides the group into top items that always stay at the top

and bottom items that always stay at the bottom and cannot be mixed.

Because the filler item is made up of 3 or more table rows, _size2 says that the page needs to

be filled by 2 or more table rows otherwise the page is not filled.

Note: The filler table rows have a white border instead of having no border so the table

rows size will be the same as the rest of the table rows with borders.

6. Dummy1

The dummy item is never pasted and its only purpose is to separate the line and total item

borders.

7. Total_keepWithPrev

The lines total item.

_keepWithPrev says that the item cannot be separated from the previous item. If the total

item is moved to the next page then it will take a line item with it from the previous page so

it will not be alone on the page.

8. Spacer1

Adds a spacer item between items in the group.

If the footer and detail items are in the same page then a spacer item is added between them.

If the footer item starts in a new page then a spacer will not be added before it.

9. Footer

The footer item contains the comment and summary items.

The footer is put in a separate item that is only added at the end instead of being a fixed part

of the account top level item that will be in every page.

10. Comment_keepTogether

The report breaks multiline comments into single lines and inserts every line into its own

table row instead of using a fixed table row height.

The comment item contains all the comment lines.

_keepTogether says that it cannot be split and must stay whole. If the entire comment does

not fit in the page then the comment is moved to the next page.

Note: The comment table rows have a white border instead of having no border so the

table rows size will be the same as the rest of the table rows with borders.

 Page 115 of 127

AKIOMA
simplifying complexity

www.akioma.de

11. CommentLine

Contains a single comment line.

12. Spacer2

Adds a spacer item between comment items.

13. Dummy2

The dummy part only purpose is to help differentiate between the comment line item table

and the table cell it is in.

14. Summary

The report summary item.

The summary is in a separate item and not a fixed part of the footer item so if the comments

overflow onto the next pages then the summary will not be repeated with the footer item in

the next pages.

Note: The summary table rows have a white border instead of having no border so the

table rows size will be the same as the rest of the table rows with borders.

15. Dummy3

The dummy part only purpose is to help differentiate between the summary item table and

the table cell it is in.

 Page 116 of 127

AKIOMA
simplifying complexity

www.akioma.de

The exercise introduces the following DocxFactory paging features.

_pageSize<n>

_pageSize sets the page size in number of rows and divides the report into pages.

_pageSize is set at the top level item for the page the top level item starts

More specifically, after an item is pasted if the total size of the items in the page is greater than the

page size then a new page is started, all the item parents upto the top level item are copied with their

field values and the item is moved to the new page.

Note: DocxFactory does not have a repeat header paging feature but when an item is moved to a

new page all its parents are copied to the new page that can contain column labels, header

information or a title and are repeated for every page their children continue onto.

Note: In case an item is pasted without pasting its parent first and the missing parent is filled in, if

the item does not fit in the page and is moved to a new page then the parent is moved with

him. You can paste an item without first pasting its parent for parents that are only needed

with their children and there is no need for them alone on the page.

For example: a parent that contains the column labels for its line items. The parent and its

column labels is only needed with its line items. There is no need for the parent and its column

labels alone on the page.

Note: Because _pageSize activates the DocxFactory paging features and is set at the top level item

that starts a new page, it can be set for some top level items and not set for others allowing

you to use DocxFactory paging features for some top level items and Word paging features

for others.

Note: Because the DocxFactory paging features use page breaks to start a new page all the pages in

the new document will never go over their page size and the word paging features will never

be activated.

Note: You can also enter page sizes with a decimal point by using a “d” instead of “.” because “.”

are not allowed in bookmark names. For example: _pageSize10d5 (for page size 10.5).

_size<n>

_size lets you set the item size manually for items with table rows that have a different height than

the rest of the table rows or with anything other than tables rows like paragraphs.

If you are setting the item size for items with child items do not include the child items size and all

table rows with child items in them.

Note: You can also enter item sizes with a decimal point by using a “d” instead of “.” because “.” are

not allowed in bookmark names. For example: _size1d5 (for size 1.5).

 Page 117 of 127

AKIOMA
simplifying complexity

www.akioma.de

_keepTogether

_keepTogether says that the item cannot be split and must stay whole so either the item fits in the

page or the entire item is moved to the next page.

_keepTogether is not needed for items with no children because DocxFactory only moves items when

the page size is exceeded so if the item does not have any children then it is the smallest thing that

can be moved and it cannot be split. The problem is with the parent items that can be split across

pages.

_keepWithPrev

_keepWithPrev says that the item cannot be separated from the previous item pasted in the group so

if the item does not fit in the page and is moved to the next page then the previous item is moved

with him. For example: use keep with previous for total lines so they will never be alone on the page.

filler<n>

Items named “filler<n>” are page filler items. The filler item fills the page to its full size. There should

only be one filler item for a page.

If the filler item is made up of 3 or more table rows then the filler item is expanded to fill the page by

repeating the middle table row, the filler item fills the page in increments of one table row and if

_size<n> is added then the page needs to be filled by <n> table rows or more otherwise the page is

not filled.

If the filler item is made up of less than 3 table rows then the filler item is repeated to fill the page,

the filler item fills the page in increments of the filler item size and _size<n> works in the regular way

and sets the filler item size.

The filler item in the template divides the item group into top and bottom items. When the page is

filled the filler item is inserted between the top and bottom items keeping the top items at the top

and pushing the bottom items to the bottom. If a top item is pasted after a bottom item was pasted

then the top item is moved to the next page keeping the top items at the top and the bottom item at

the bottom.

spacer<n>

Items named “spacer<n>” are group spacer items. The spacer item is added between the items in the

group. There should only be one spacer item for a group.

 Page 118 of 127

AKIOMA
simplifying complexity

www.akioma.de

2. Compile the template.

3. Create the .DOCX file.

Copy and run the code below.

#include "dfw.h"

#include <stdio.h>

#include <time.h>

int main()

{

 time_t l_start = clock();

 dfw_load("/opt/DocxFactory/exercises/templates/docxfactory_paging.dfw");

 if (dfw_getErrorFlag()) goto ERROR;

 dfw_paste("Account");

 for (int i = 0; i < 10; i++)

 {

 dfw_paste("Withdraw");

 }

 for (int i = 0; i < 9; i++)

 {

 dfw_paste("Deposit");

 }

 dfw_paste("Total");

 dfw_paste("Summary");

 for (int i = 0; i < 3; i++)

 {

 dfw_paste("Comment");

 for (int j = 0; j < 5; j++)

 {

 dfw_paste("CommentLine");

 }

 }

 dfw_save("/tmp/docxfactory_paging.docx");

 if (dfw_getErrorFlag()) goto ERROR;

 printf("Completed (in %.3f seconds);\n",

 (double) (clock() - l_start) / CLOCKS_PER_SEC);

 return 0;

 ERROR:

 printf("%s\n", dfw_getErrorWhat());

 return 1;

}

 Page 119 of 127

AKIOMA
simplifying complexity

www.akioma.de

Note: The detail item and its column labels is only needed with the line items and the footer item

containing the comments and the summary item is only needed with its child items, there is

no need for them alone on the page.

For that reason the detail and footer items are not pasted and are filled in when their child

items are pasted so if the first child item pasted does not fit in the page and is moved to the

new page then they are moved with him so they will not remain alone on the page.

 Page 120 of 127

AKIOMA
simplifying complexity

www.akioma.de

4. Open the created .DOCX file (see picture below).

You can change the number of line items, number of comments etc. in the code and recreate

the new document to see how the report is divided into pages.

 Page 121 of 127

AKIOMA
simplifying complexity

www.akioma.de

Third Party Acknowledgement

DocxFactory only includes third party components that have a

permissive free license. According to Wikipedia, "A permissive free

software license is a class of free software license with minimal

requirements about how the software can be redistributed. Such

licenses therefore make no guarantee that future generations of the

software will remain free. This is in contrast to licenses which have

reciprocity / share-alike requirements. Both sets of free software

licenses offer the same freedoms in terms of how the software can be

used, studied, and privately modified. A major difference is that

when the software is being redistributed (either modified or

unmodified), permissive licenses permit the redistributor to restrict

access to the modified source code, while copyleft licenses do not

allow this restriction. ". The third party components included in

DocxFactory are standard components widely used in commercial

products.

The following documentation notices are required by third party

components included in DocxFactory:

DocxFactory includes the ICU version 1.2.0. Such technology is

subject to the following terms and conditions:

Copyright © 1991-2014 Unicode, Inc. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining

a copy of the Unicode data files and any associated documentation

(the "Data Files") or Unicode software and any associated

documentation (the "Software") to deal in the Data Files or Software

without restriction, including without limitation the rights to use

copy, modify, merge, publish, distribute, and/or sell copies of the

Data Files or Software, and to permit persons to whom the Data Files

or Software are furnished to do so, provided that

(a) this copyright and permission notice appear with all copies of

 the Data Files or Software,

(b) this copyright and permission notice appear in associated

 documentation, and

(c) there is clear notice in each modified Data File or in the

 Software as well as in the documentation associated with the

 Data File(s) or Software that the data or software has been

 modified.

THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY OF

ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE

COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY

CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY

DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE

OF THE DATA FILES OR SOFTWARE.

Except as contained in this notice, the name of a copyright holder

shall not be used in advertising or otherwise to promote the sale,

use or other dealings in these Data Files or Software without prior

written authorization of the copyright holder.

 Page 122 of 127

AKIOMA
simplifying complexity

www.akioma.de

DocxFactory includes the Xerces-C++ XML Parser version 3.1.1. Such

technology is subject to the following terms and conditions:

The Apache Software License, Version 1.1. Copyright (c) 1999. The

Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer in

 the documentation and/or other materials provided with the

 distribution.

3. The end-user documentation included with the redistribution,

 if any, must include the following acknowledgment:

 "This product includes software developed by the

 Apache Software Foundation (http://www.apache.org/)."

 Alternately, this acknowledgment may appear in the software

 itself, if and wherever such third-party acknowledgments normally

 appear.

4. The names "Xerces" and "Apache Software Foundation" must

 not be used to endorse or promote products derived from this

 software without prior written permission. For written

 permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache",

 nor may "Apache" appear in their name, without prior written

 permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,

OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many

individuals on behalf of the Apache Software Foundation and was

originally based on software copyright (c) 1999, International

Business Machines, Inc., http://www.ibm.com. For more information on

the Apache Software Foundation, please see <http://www.apache.org/>.

 Page 123 of 127

AKIOMA
simplifying complexity

www.akioma.de

DocxFactory includes ImageMagick version 6.9.1. Such technology is

subject to the following terms and conditions:

1)

Copyright (C) 2003 ImageMagick Studio, a non-profit organization

dedicated to making software imaging solutions freely available.

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files

("ImageMagick"), to deal in ImageMagick without restriction,

including without limitation the rights to use, copy, modify, merge,

publish, distribute, sublicense, and/or sell copies of ImageMagick,

and to permit persons to whom the ImageMagick is furnished to do so,

subject to the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of ImageMagick.

The software is provided "as is", without warranty of any kind,

express or implied, including but not limited to the warranties of

merchantability, fitness for a particular purpose and

noninfringement. In no event shall ImageMagick Studio be liable for

any claim, damages or other liability, whether in an action of

contract, tort or otherwise, arising from, out of or in connection

with ImageMagick or the use or other dealings in ImageMagick.

Except as contained in this notice, the name of the ImageMagick

Studio shall not be used in advertising or otherwise to promote the

sale, use or other dealings in ImageMagick without prior written

authorization from the ImageMagick Studio.

 Page 124 of 127

AKIOMA
simplifying complexity

www.akioma.de

2)

In November 2002, the GraphicsMagick Group created GraphicsMagick

from ImageMagick Studio's ImageMagick source. ImageMagick adopted

some of their improvements to existing programs and scripts,

including:

Unix configure

Installation instructions Test programs

PerlMagick test scripts

JP2 image coder

Windows configure

Windows IMDisplay

Windows ATL COM

In addition the Windows distrbution of ImageMagick includes this new

program:

Windows ATL7 COM

The improvements and the ATL7 COM is copyright:

Copyright (C) 2002 GraphicsMagick Group, an organization dedicated to

making software imaging solutions freely available.

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files

("GraphicsMagick"), to deal in GraphicsMagick without restriction,

including without limitation the rights to use, copy, modify, merge,

publish, distribute, sublicense, and/or sell copies of

GraphicsMagick, and to permit persons to whom GraphicsMagick is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of GraphicsMagick.

The software is provided "as is", without warranty of any kind,

express or implied, including but not limited to the warranties of

merchantability, fitness for a particular purpose and

noninfringement. In no event shall GraphicsMagick Group be liable for

any claim, damages or other liability, whether in an action of

contract, tort or otherwise, arising from, out of or in connection

with GraphicsMagick or the use or other dealings in GraphicsMagick.

Except as contained in this notice, the name of the GraphicsMagick

Group shall not be used in advertising or otherwise to promote the

sale, use or other dealings in GraphicsMagick without prior written

authorization from the GraphicsMagick Group.

 Page 125 of 127

AKIOMA
simplifying complexity

www.akioma.de

3)

From 1991 to August 1999, ImageMagick was developed and distributed

by E. I. du Pont de Nemours and Company:

Copyright 1999 E. I. du Pont de Nemours and Company

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files

("ImageMagick"), to deal in ImageMagick without restriction,

including without limitation the rights to use, copy, modify, merge,

publish, distribute, sublicense, and/or sell copies of ImageMagick,

and to permit persons to whom the ImageMagick is furnished to do so,

subject to the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of ImageMagick.

The software is provided "as is", without warranty of any kind,

express or implied, including but not limited to the warranties of

merchantability, fitness for a particular purpose and

noninfringement. In no event shall E. I. du Pont de Nemours and

Company be liable for any claim, damages or other liability, whether

in an action of contract, tort or otherwise, arising from, out of or

in connection with ImageMagick or the use or other dealings in

ImageMagick.

Except as contained in this notice, the name of the E. I. du Pont de

Nemours and Company shall not be used in advertising or otherwise to

promote the sale, use or other dealings in ImageMagick without prior

written authorization from the E. I. du Pont de Nemours and Company.

4)

This copyright is limited to some code (for locating an installed

Ghostscript under Windows) in the file magick/nt_base.c which was

incorporated from the gsview package:

Copyright (C) 2000-2002, Ghostgum Software Pty Ltd. All rights

reserved.

Permission is hereby granted, free of charge, to any person obtaining

a copy of this file ("Software"), to deal in the Software without

restriction, including without limitation the rights to use, copy,

modify, merge, publish, distribute, sublicense, and/or sell copies of

this Software, and to permit persons to whom this file is furnished

to do so, subject to the following conditions:

This Software is distributed with NO WARRANTY OF ANY KIND. No author

or distributor accepts any responsibility for the consequences of

using it, or for whether it serves any particular purpose or works at

all, unless he or she says so in writing.

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

 Page 126 of 127

AKIOMA
simplifying complexity

www.akioma.de

5)

The Base64Decode() and Base64Encode() methods are based on source

code obtained from OpenSSH. This source code is distributed under the

following license.

Copyright (c) 2000 Markus Friedl. All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met: 1. Redistributions of source code must retain the above

copyright notice, this list of conditions and the following

disclaimer. 2. Redistributions in binary form must reproduce the

above copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided with

the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6)

The C++ API known as "Magick++", and which resides in the Magick++

directory, is distributed under the following license:

Copyright 1999 - 2003 Bob Friesenhahn <bfriesen@simple.dallas.tx.us>

Permission is hereby granted, free of charge, to any person obtaining

a copy of the source files and associated documentation files

("Magick++"), to deal in Magick++ without restriction, including

without limitation of the rights to use, copy, modify, merge,

publish, distribute, sublicense, and/or sell copies of Magick++, and

to permit persons to whom the Magick++ is furnished to do so, subject

to the following conditions:

This copyright notice shall be included in all copies or substantial

portions of Magick++. The copyright to Magick++ is retained by its

author and shall not be subsumed or replaced by any other copyright.

The software is provided "as is", without warranty of any kind,

express or implied, including but not limited to the warranties of

merchantability, fitness for a particular purpose and

noninfringement. In no event shall Bob Friesenhahn be liable for any

claim, damages or other liability, whether in an action of contract,

tort or otherwise, arising from, out of or in connection with

Magick++ or the use or other dealings in Magick++.

 Page 127 of 127

AKIOMA
simplifying complexity

www.akioma.de

7)

ImageMagick makes use of third-party "delegate" libraries to support

certain optional features. These libraries bear their own copyrights

and licenses, which may be more or less restrictive than the

ImageMagick license. For convenience, when ImageMagick is bundled

with (or compiled with) "delegate" libraries, a copy of the licenses

for these libraries is provided in a "licenses" directory.

DocxFactory includes the ZINT backend (aka ZINT shared library)

version 2.4.3. Such technology is subject to the following terms and

conditions:

Copyright (C) 2008 Robin Stuart <robin@zint.org.uk>

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer in

 the documentation and/or other materials provided with the

 distribution.

3. Neither the name of the project nor the names of its contributors

 may be used to endorse or promote products derived from this

 software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

